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Abstract

This paper proposes the concept of irrational inattention, a novel framework integrat-
ing overprecision into rational inattention models. Overprecision refers to an overestima-
tion of the accuracy of prior beliefs. In our model, this bias leads to suboptimal updating
directly by distorting the perceived value of new information and indirectly by amplifying
the effects of attentional costs. We test these predictions using a 2x2 belief-updating ex-
periment, manipulating overprecision through calibration feedback and attentional costs
via information complexity. The results show that calibration feedback reduces overpre-
cision and information complexity exacerbates attentional cost. With respect to beliefs,
the results indicate that the effect of overprecision on updating depends on information
complexity. These findings provide empirical evidence that inattention may arise from
biased priors, rather than from rational cost-benefit optimization alone.
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1 Introduction

The canonical full information rational expectations (FIRE) framework assumes that

agents form beliefs by optimally processing all available information. However, empirical

evidence often contradicts this assumption.1 A prominent explanation for these departures

from the Bayesian benchmark is “rational inattention” (Sims, 2003). At the core of this

theory is the premise that processing information is costly. Therefore, if the value of

processing a unit of information does not exceed its cost, then ignoring that information

becomes the “rational” course of action. This theory has emerged as a key framework,

not only because it can explain a wide variety of economic phenomena such as financial

contagion (Mondria and Quintana-Domeque, 2012) or the slow adjustment of prices to

nominal shocks (Woodford, 2001; Sims, 2003), but also because it appeals to a common

human behavior—ignoring information.2

While the assumption that agents can assess the costs and benefits of acquiring and

processing information without bias serves as a useful benchmark, it is unlikely to hold in

practice. A large body of literature has shown that individuals deviate significantly from

rational or fully Bayesian optimization due to biases such as base rate neglect (Esponda

et al., 2024), correlation neglect (Enke and Zimmermann, 2019), environmental complexity

(Oprea, 2020), or simply limited cognitive ability (D'Acunto et al., 2021). More recently,

the literature has highlighted overprecision as a systematic and pervasive bias shaping

various aspects of decision-making and behavior (Kahneman, 2011; Moore et al., 2015;

Bosch-Rosa et al., 2024).3 Overprecision is a specific form of overconfidence in which

individuals overestimate the precision of their information (Moore, 2022). As a result, it is

closely related to individuals’ subjective cost-benefit evaluation of information processing

and attention.

This paper examines how overprecision influences (in)attention and shapes individu-

1While some studies show underreaction to changes in taxation (Chetty et al., 2009; Taubinsky and
Rees-Jones, 2018) or to important monetary policy announcements (Coibion et al., 2021, 2020), others
document overreaction to macroeconomic or financial news by households, firms, and experts (Bordalo
et al., 2020; Broer and Kohlhas, 2024). See Born et al. (2023) for a recent literature review on the FIRE.

2See Maćkowiak et al. (2023) for a recent overview of the rational inattention literature.

3Examples include excessive trading in the stock market (Barber and Odean, 2001), the formation of
systematic forecasting errors in finance (Deaves et al., 2019), political extremism (Ortoleva and Snowberg,
2015), or the prevalence of “fake news” (Thaler, 2024).
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als’ use of information. Specifically, we explore how overprecision may cause systematic

deviations from optimal attention allocation by distorting the perceived cost-benefit as-

sessments of information processing. Our key insight is that overprecision introduces a

two-layered distortion. First, it biases the perceived precision of the agent’s prior beliefs,

leading them to overestimate the extent of their current knowledge. Second, because

agents see fewer gains from processing new signals when they think their baseline knowl-

edge is highly precise, they may exhibit “irrational inattention,” allocating less attention

than standard rational inattention models would predict.

To formalize these ideas, we develop a model in which an overprecise agent updates

its beliefs about an uncertain state after observing a noisy signal. As in the canonical

models of rational inattention, the agent can reduce signal noise by paying more attention.

This process is costly, and the optimal level of attention is determined by balancing the

potential benefits of more precise information against the costs of processing it. However,

since the agent is overprecise, it overestimates the accuracy of its priors, distorting the

cost-benefit tradeoff that governs optimal attention allocation. This distortion introduces

a two-layered bias: overprecision not only skews the perceived value of information but

also amplifies the perceived costs of attention. As a result, higher levels of overprecision

reduce the marginal value of paying attention, leading agents to allocate less attention

when information is costly, further reinforcing their initial bias.

We test our model’s predictions using a novel survey task embedded in a pre-registered,

incentivized 2x2 online experiment conducted on a large, representative sample of the

German population. The survey consists of two blocks. In the first block, participants

view a series of pictures depicting groups of people and are asked to estimate the average

age of the individuals in each picture at the time it was taken. For each picture, we also

elicit participants’ expected absolute error.4 Following the “Subjective Error Method”

(SEM) introduced in Bosch-Rosa et al. (2024), we measure overprecision as the difference

between participants’ expected absolute errors and their realized absolute errors across

all pictures in the first block. In the second block, participants are shown a new set of

pictures and provide estimates of the average age and expected absolute error for each

4As an example, imagine we asked about the number of teeth an adult polar bear has. While par-
ticipants will try to provide their best answer (with an expected error of zero), they will also be aware
that their answer is most likely incorrect (Yeung and Summerfield, 2012; Bosch-Rosa et al., 2024). Their
anticipated deviation from the true value, regardless of direction, the absolute error, is what we try to
capture.
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picture. However, in this block, participants provide these estimates twice; first with

no information other than the picture (as in the first block) and then after receiving a

“cloud” containing a random subset of all the ages in the picture. This design allows us

to study participants’ updating process conditional on their overprecision.

To identify the causal effects of overprecision and inattention on belief updating, we

implement two experimental treatments designed to independently manipulate these com-

ponents in the second block of the experiment. For overprecision, we provide feedback

to a randomly selected subset of participants, informing them whether their absolute er-

ror estimates in the first block of pictures were overprecise or underprecise. The control

group receives no feedback. By comparing pre- and post-feedback blocks, we can iden-

tify the causal effect of calibration feedback on overprecision. To exogenously increase

attention costs, we randomly assign a subset of participants to a treatment that makes

information processing harder by including irrelevant “decoy” words—such as “table” or

“spaghetti”—into the information cloud, effectively increasing information complexity by

adding extraneous bits without altering the signal’s precision.

This stylized experimental design includes several unique features. First, although

prior research has examined the effects of calibration feedback on overconfidence (e.g.,

Russo et al., 1992; Moore and Schatz, 2020), these studies measure overprecision using

confidence intervals, a method known to be problematic due to respondents’ unfamiliarity

with them (Teigen and JØrgensen, 2005; Moore et al., 2015). In contrast, we measure

overprecision using the SEM, a method that is robust across knowledge domains and

heterogeneous populations (Bosch-Rosa et al., 2024).5 Second, we employ decoy words as

a simple yet novel treatment to manipulate attention costs. To our knowledge, the closest

example is Ambuehl et al. (2022); Bronchetti et al. (2023), where participants solve two-

digit addition problems containing both correct and incorrect answers, and assess the

likelihood that at least half are correct. Third, we use a continuous state variable (age) to

distinguish between the mean and variance of beliefs. Unlike the “colored dot” paradigm

used in previous attention cost experiments (e.g. Dewan and Neligh, 2020), this more

naturalistic measure induces variation in priors and, consequently, overprecision.

5Another line of literature considers the effect of measurement scales on the amount of measured over-
precision (Haran et al., 2010). Our method avoids this issue, as it does not require scales, circumventing
the pitfalls associated with this dimension.
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Our results confirm the effectiveness of our experimental treatments. Feedback reduced

overprecision among participants who were overprecise in the first block of pictures, while

increasing it for those who were underprecise. The attention cost treatment also worked

as expected: respondents in the “decoy” condition revised their beliefs less, made larger

estimation errors, and spent more time studying the information cloud. Regarding belief

updating, participants who received feedback indicating they were overprecise placed more

weight on the signal in the second block when updating their beliefs. In other words,

reducing overprecision led participants to view their prior beliefs as less accurate, thereby

shifting the perceived cost-benefit analysis in favor of allocating more attention to new

information.

Our pre-registered analysis does not detect the predicted interaction between overpre-

cision and attention costs. However, exploratory analysis suggests that the interaction

null result is likely due to feedback influencing both overprecision and perceived task diffi-

culty, introducing a confound that masks the interaction effect in aggregate comparisons.

To address this, we introduce a more granular statistical model that isolates the share

of belief updating attributable to new information. The results indicate that overprecise

participants are systematically less responsive to signals when processing costs are high

and make make larger estimation errors in the “decoy” condition. Together, these findings

support the model’s prediction that irrational inattention emerges from the interaction

between biased priors and increased information complexity.

Our study contributes to the growing literature on rational inattention by showing

how cognitive biases can interact with information-processing costs to generate system-

atic deviations from optimal attention allocation. As noted by Maćkowiak et al. (2023),

an important direction for future research is to extend the rational inattention framework

beyond its current application in explaining behavioral anomalies to examine how these

anomalies interact with information frictions. In line with this call, we show that over-

precision, a well-documented cognitive bias, distorts attention allocation by altering the

perceived value of new information. This contributes to a broader shift in the literature,

from treating inattention as purely rational to recognizing how miscalibrated priors or

distorted mental models can drive it. We also contribute to the literature that stud-

ies how non-standard preferences and beliefs shape attention, such as Pagel (2018), who

incorporates prospect theory into portfolio choice under inattention, or Bolte and Ray-
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mond (2024), who show that payoff-dependent emotions influence attention allocation. In

contrast to these preference-driven mechanisms, our results identify a belief-based distor-

tion: overprecision inflates perceived prior accuracy, which in turn reduces responsiveness

to costly information. This mechanism is consistent with the framework proposed by

Gabaix (2019), in which behavioral phenomena like money illusion and base-rate neglect

are driven by internally biased information processing. We extend this perspective by

isolating overprecision as a specific cognitive distortion that amplifies attentional frictions

and leads to suboptimal belief updating.

We also contribute to the literature on overprecision, a pervasive bias linked to a variety

of negative outcomes and described by Bazerman and Moore (2012) as “the mother of

all biases.” Precisely because of this relevance, trying to reduce overprecision through

feedback has been an active area of research (Moore and Healy, 2008; Haran et al., 2010),

though such interventions have proven notoriously difficult (Moore et al., 2015; Sanchez

and Dunning, 2023). In contrast, we show that if measured using the subjective error

method (Bosch-Rosa et al., 2024), feedback can reduce overprecision in a simple context

in the short run. More importantly, our results show that overprecision can lead to a

misallocation of attention, leading people to become “irrationally inattentive.”

Irrational inattention is particularly problematic because, unlike standard rational

inattention, it does not respond predictably to incentives. While increasing the rewards

for accuracy can offset attention costs under rational inattention, our model predicts that

overprecision continues to suppress belief updating even when the stakes are high. This

prediction is supported by our empirical finding that overprecision reduces responsiveness

even when information is easy to process. Beyond validating the model, this distinction

has direct practical implications for the design of information policies and behavioral in-

terventions. For example, in economic policy contexts, raising the salience of monetary or

fiscal announcements may improve responsiveness among inattentive individuals, but may

have limited impact on those exhibiting overprecision. In settings where public informa-

tion uptake is crucial (e.g., health advisories, financial education, or civic communication)

interventions that target biased confidence in prior beliefs may be necessary to promote

more accurate belief updating and improved decision-making.
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2 Model & Hypotheses

We start with a standard Bayesian updating framework where agent i has a prior belief

about the uncertain fundamental θ. These beliefs are normally distributed with mean

µθ,i and variance σ2
θ,i. The agent uses the perceived variance σ̃2

θ,i rather than objective

variance σ2
θ,i with the difference depending on the agents’ overprecision ωi such that

σ̃2
θ,i =

σ2
θ,i

ωi

with ωi ∈ (0,∞). Therefore, if an agent is overprecise (ωi > 1), it perceives its prior belief

as more precise than it really is. If the agent is underprecise (ωi < 1), it perceives its

prior belief as less precise than it really is.

Agents receive an unbiased noisy public signal x about the fundamental:

x = θ + ϵ,

where ϵ ∼ N(0, σ2
ϵ ). The signal noise is orthogonal to the prior belief noise. We follow

Fuster et al. (2020) and model inattention by adding an additional individual-specific

noise term ψi. Therefore, agent i perceives the signal as

si = x+ ψi,

where ψi is assumed to be normally distributed as N(0, σ2
ψ,i). The variance of this noise

symbolizes the level of inattention.

In this setup, the posterior belief of agent i can be written as the weighted average of

the signal and the prior mean:

E[θ|si] = βi · (θ + ϵ+ ψi) + (1− βi) · µθ,i, (1)

where the weight on the signal (or update rate) can be expressed as the ratio of the

variances

βi =
σ̃2
θ,i

σ̃2
θ,i + σ2

ϵ + σ2
ψ,i

. (2)

Therefore, unlike Fuster et al. (2020), where updates depend solely on signal and atten-
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tional costs, in our model, overprecision skews agents’ weighting of new information.

2.1 Optimal Updating

The inattention to information, expressed by the variance of the individual specific noise

σ2
ψ,i, is modeled as the agent’s choice variable. We assume that the agent’s payoff depends

on two factors: (i) the expected quadratic belief error and (ii) the cost of attention.

Accordingly, agents solve:

max
σ−2
ψ,i

−ϕiE
[
E
[
(θ − E[θ|si])2|si

]]︸ ︷︷ ︸
σ2
θ|si

−C(σ−2
ψ,i) (3)

where σ2
θ|si is the posterior variance of the belief given the level of the processed signal, ϕi

is an individual-specific scaling parameter that measures the incentive to hold an accurate

posterior, and the function C represents the cost of attending to the signal. Following the

literature on rational inattention, we assume that the cost of attention is related to the

expected reduction in uncertainty, measured by Shannon entropy:

C(σ−2
ψ,i) = g(H(x)−H(x|si))

= g

(
1

2
ln

(
σ2
x

σ2
x|s

))
= g

(
1

2
ln

(
1 +

σ̃2
θ,i + σ2

ϵ

σ2
ψ,i

))
.

A common approximation is to assume that the function g is linearly related to the

expected reduction in uncertainty such that

C(σ−2
ψ,i) =

λi
2
ln

(
1 +

σ̃2
θ,i + σ2

ϵ

σ2
ψ,i

)
(4)

In this case, the parameter λi reflects the marginal cost of attention.

By substituting equation (4) into equation (3) and using the expression in (2), we can

rewrite the maximization problem as a function of the update rate βi:

−ϕi(1− βi)σ̃
2
θ,i −

λi
2
ln

 1

1− βi
σ̃2
θ,i+σ

2
ϵ

σ̃2
θ,i

 .
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Solving this problem for βi yields the optimal solution:

β∗
i = max

{
0,

σ̃2
θ,i

σ̃2
θ,i + σ2

ϵ

− λi
2ϕiσ̃2

θ,i

}
. (5)

The two-layered effect of overprecision on posterior beliefs is apparent in equation (5):

the first term represents the standard Bayesian update rate, adjusted by the prior variance,

which is biased by overprecision, while the second term captures the effect of inattention,

which is also influenced by overprecision.6

2.2 Hypotheses

Assuming equation (5) has an interior solution, we can derive several hypotheses. The

first two have to do with changes in overprecision and attention costs:

Hypothesis 1: Increasing overprecision leads to a lower update rate:

∂β∗
i

∂ωi
= −

σ2
ϵ/σ

2
θ,i

(1 + ωiσ2
ϵ/σ

2
θ,i)

2
− λi

2ϕiσ2
θ,i

< 0

Hypothesis 2: Increasing attention cost leads to a lower update rate:

∂β∗
i

∂λi
= − ωi

2ϕi · σ2
θ,i

< 0

Both hypotheses indicate underreaction to information relative to the FIRE benchmark.

However, the mechanisms differ. Hypothesis 1 captures irrational inattention as underre-

action results from biased beliefs about the accuracy of the prior. In contrast, Hypothesis

2 reflects rational inattention, where underreaction is optimal as agents deliberately limit

information processing due to the explicit attention costs. A key implication of both

hypotheses is that increasing incentives (ϕi) reduces underreaction by raising the value

of holding accurate beliefs. However, only underreaction from rational inattention disap-

pears entirely as ϕi → ∞. Thus, while increasing incentives may fully eliminate underre-

action due to attention costs, they are insufficient to offset the effects of overprecision.

The third hypothesis has to do with the interaction between overprecision and atten-

tion costs:

6Note that in this formulation of equation (5), ϕi and λi are non-negative to ensure that each term’s
contribution to the update rate β∗

i is non-positive when considered independently.
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Hypothesis 3: Overprecision amplifies the negative effects of attention costs on the

update rate:
∂

∂ωi

(
∂β∗

i

∂λi

)
= − 1

2ϕiσ2
θ,i

< 0

This interaction captures the indirect channel through which overprecision influences belief

formation via the misallocation of attention. The intuition for this hypothesis lies in the

non-linear structure of β, where each increase in the attention cost λ sharply push down

β, thereby amplifying the effect of attention costs on belief updating. Figure 1 illustrates

this effect by plotting the optimal update rate (vertical axis) as a function of overprecision

(horizontal axis) and varying levels of attention cost (depicted by different line types) for

the same level of objective prior variance and signal precision. As can be seen, the more

overprecise one becomes, the greater the effect of changing the cost of attention, up to

extreme levels where the agent does not update at all. This increased sensitivity reflects

the twofold influence of overprecision on posterior beliefs: a direct effect on the perceived

prior variance, and an indirect effect on the responsiveness to attention costs.

Figure 1: Optimal updating by varying overprecision and cost of attention
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3 Experimental Design

3.1 Design

To test the predictions of our model, we conduct a 2x2 between-subjects online experi-

ment.7 The experiment consists of two blocks. In the first block, participants view five

historical pictures, such as that in Figure 2 (see Appendix D.1 for the full set).8 For each

picture, participants are asked to estimate the average age of the people in the image at

the time the picture was taken. After submitting their estimate, participants are asked

to assess the absolute distance between their estimate and the true average age in the

picture. That is, participants are asked to estimate their “subjective error” (Bosch-Rosa

et al., 2024). Both the age estimate and the subjective error are restricted to a range

from 0 to 100.

Figure 2: Example of picture used in the online experiment.

Note: This picture depicts the Fifth Solvay Conference which was held in October 1927. The average age of the people
in the picture is 45.83 years. The youngest persons (Paul Dirac and Werner Heisenberg) are 25 years old while the oldest
person (Hendrick Lorentz) is 74 years old.

7The experimental design and analysis plan are pre-registered at AsPredicted #154320.

8The pictures cover a range of topics, including politics, popular culture, and the arts. The order of
the pictures for each block was randomized at the participant level.
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At the end of the first block, two-thirds of participants are randomly assigned to the

Feedback treatment, where they receive a feedback about the accuracy of their subjective

errors. The remaining third are assigned to the No-Feedback treatment and receive no

feedback. Specifically, subjects in the Feedback treatment receive the following text:

“In more than half of the last five pictures, your answer was [(a) further away from the

correct answer ][(b) closer to the correct answer ] than you expected”

depending on the performance.9 We refer to the version of feedback with (a) asOverprecise

feedback and with (b) as Underprecise feedback.

After receiving the feedback, participants begin the second block, during which they

once again estimate the average age of individuals in a picture and report their subjective

error across five pictures. The difference between Block 1 and Block 2 is that, following

the belief and subjective error report, participants are shown an “information cloud”

containing fifteen unique ages of people in the picture. Participants are informed that

each cloud contains fifteen ages corresponding to individuals in the picture.

Participants are randomly assigned to one of two informational treatments. In the

Easy-Info treatment, the cloud displays 15 ages corresponding to individuals in the pic-

ture. In the Hard-Info treatment, the cloud includes 85 additional random words (decoys)

interspersed with the ages (see Figure 3 for an example).10 After viewing the cloud, par-

ticipants are asked to enter their updated estimate of the average age in the picture.

A graphical summary of the whole experimental design can be found in Figure 4. The

2x2 design of the experiment allows us to observe belief updating by comparing posterior

beliefs to initial beliefs as a function of overprecision and attention cost.

9We oversample the Feedback treatment to ensure sufficient statistical power for each type of feedback.

10An alternative approach would have been to allow subjects to endogenously select how many ages to
observe for a certain given cost. Instead, we opted to exogenously manipulate attention costs through the
use of decoy items in the signal cloud. This strategy offers clean identification of causal effects without
introducing strategic behavior or confounding variation in effort or motivation.
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Figure 3: Example of a information cloud by Easy-Info and Hard-Info treatments
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(b) Hard-Info treatment

Note: Left panel shows the information cloud containing 15 ages of people in the picture. The right panel shows the format
in the Hard-Info condition, where the same ages are in identical position, along with 85 random words. All participants
within each treatment saw the same set of randomly drawn ages and words.

Figure 4: Overview of the experimental design
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Note: Graphical representation of the experimental design. In both blocks, subjects evaluate five different pictures. The
pictures in each block are the same for all subjects, but their order is randomized at the subject level. In Block 1, each
participant i stated for each of the five pictures k a belief about the average age in the picture (priori,k) and reported a
subjective error (subjective errori,k). In Block 2, each participant stated a belief about the average age, the subjective
error, and a posterior belief (posteriori.k) after seeing the signal.
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3.2 Incentives & Procedures

The survey was fielded by Bilendi, a professional survey provider, on a representative

sample of the German population. Participants were informed that a randomly selected

5% sample would be eligible for a 10e bonus payment, in addition to the standard fee paid

by Bilendi, contingent on the accuracy of their answers. To prevent hedging, participants

were told that the bonus payment would depend on the accuracy of a single, randomly

selected estimate. Payoffs were determined using the binarized scoring rule (Hossain and

Okui, 2013). Following Danz et al. (2022), the formulation of the scoring rule was not

directly presented to participants. Instead, they were told that the probability of winning

the bonus increases with the accuracy of their answers.11 Participants had the option to

click on a link to read a detailed, formal description of the payoff mechanism.

3.3 Sample & Data Selection

Because Bilendi pays participants based on survey completion rather than accuracy, we

screened out participants who failed attention checks or answered fewer than two out of

our four instruction comprehension questions correctly. Participants who passed the initial

screening and completed the survey were considered “completed” surveys. In total, we

collected 1321 completed surveys. Following our pre-registration, we dropped observations

where the subjective error exceeded the distance between the prior and max(prior, 100−

prior). If this behavior occurred more than once for the same participant, we removed all

of its answers from the dataset. We also excluded any observation where the estimated

average age was above 80 or below 20 years; if this occurred more than once for the

same participant, we removed all of its answers from the dataset. We also excluded any

participant identified as a “speeder”, defined as those who completed more than 50% of

the prior estimates in less than 25% of the median completion time. From the remaining

sample, we retained the first 1,200 participants (our pre-registered sample) and dropped

the rest.

The final sample is representative of the adult German population in terms of age

(mean of 44.5 years), gender (50% female), education (30% hold a university degree),

11The specific wording was: “Je näher Ihre Antwort auf diese zufällig ausgewählte Frage an der richti-
gen Antwort liegt, desto höher ist die Wahrscheinlichkeit, dass der potenzielle Bonus dann tatsächlich
ausgezahlt wird (für weitere Informationen hier klicken). Daher liegt es in Ihrem Interesse, auf jede Frage
eine möglichst genaue Antwort zu geben.”
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and region. Table A.1 in Appendix A summarizes the demographic characteristics of the

sample compared to census data. The median participant spent 13 minutes completing

the survey.

4 Results

4.1 Overview of Data

Table 1 provides an overview of the data. From left to right, the table reports the name

we use for each picture (subjects do not see it), the average age of the people in the picture

on the day it was taken, the average prior belief, the average error made by participants

in their estimation, the average subjective error, and the average posterior belief, where

applicable.12

12Figure B.2 in Appendix C plots the density of the responses for each picture.
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Table 1: Average prior beliefs, errors, subjective errors, and posteriors

error

Picture description avg. age prior actual subjective post.

(1) Solvay Conference (1927) 45.83 56.09 10.99 5.23 .

(8.62) (7.44) (3.83) .

(1) Band Aid (1984) 27.89 29.84 4.86 3.99 .

(5.91) (4.11) (3.07) .

(1) Obama Cabinet (2009) 54.00 56.72 5.58 4.63 .

(6.26) (4.19) (3.48) .

(1) Paramount 75th Anniversary (1987) 52.32 54.10 7.45 5.25 .

(8.76) (5.23) (4.01) .

(1) Sino-German Consultations (2023) 57.04 53.07 5.93 4.53 .

(6.17) (4.97) (3.09) .

(2) G20 Summit (2017) 60.97 57.76 5.37 5.01 60.96

(6.15) (4.71) (4.73) (4.49)

(2) The Irascibles (1950) 40.20 46.10 7.20 4.75 42.20

(6.42) (5.63) (3.97) (4.58)

(2) Australian Labor Party (1901) 40.42 47.32 8.79 5.12 42.50

(8.48) (7.23) (3.99) (5.26)

(2) Merkel Cabinet (2019) 52.05 51.47 4.81 4.86 51.65

(5.99) (4.49) (4.81) (4.42)

(2) British Royal Family (2007) 48.65 49.32 7.66 5.91 49.95

(9.47) (5.97) (4.66) (8.30)

Notes: (1) and (2) refer to the block number. The year in parentheses refers to the year the picture was taken. Pictures

within blocks are presented in random order. Standard deviations are shown in parentheses below the means.

The table shows that participants are engaged with the task, as the average age esti-

mate is quite accurate.13 The data also indicates overprecision, as the average absolute

13No participant provided the exact correct answer (to two decimal places) for any picture, nor did
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error exceeds the average subjective error for all pictures in the first block. We also ob-

serve that the signal influences belief updating as the average posterior belief is closer to

the true average age than the corresponding prior in all but one instance. Finally, the gap

between subjective and actual errors narrows in the second block, showing that feedback

messages help participants calibrate their subjective error estimates.

4.2 Manipulation Checks

The goal of our experimental design is to exogenously manipulate overprecision and at-

tention costs. In this subsection, we analyze whether our interventions had the desired

effect.

Overprecision

Following Bosch-Rosa et al. (2024), we define overprecision for subject i and picture k as:

overprecisioni,k = |errori,k| − subjective errori,k,

where errori,k is the actual error made by subject i in estimating the average age of people

in picture k, and subjective errori,k is their estimated subjective error for that picture.

We then employ a Difference-in-Differences approach to assess the effect of Overprecise

and Underpercise feedback. Specifically, we run an OLS regression where overprecisioni,k

is regressed on a dummy variable that takes value one if the participant is in the feedback

treatment, the order of the picture, and the interaction between these two variables.14 This

regression is estimated separately for overprecise and underprecise participants, allowing

us to compare the feedback-induced overprecision shifts across the two groups.

Figure 5 plots the estimated effect of feedback on overprecision across rounds, along

with 90% confidence intervals. It is clear that participants who are initially overprecise

become less overprecise after the Overprecise feedback, and vice versa for those with

Underprecise feedback.

anyone consistently round to the correct answer for all 10 pictures, suggesting that help from search
engines or large language models is unlikely.

14Formally, the regression model is: overprecisioni,k = α+β1× feedbacki+β2×picture orderk +β3×
(feedbacki × picture orderk) + ϵi,k
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Figure 5: Overprecision (relative to control) across pictures and feedback treatments
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Notes: Estimated overprecision by picture and feedback treatment indicators. The dependent variable in the regressions
is overprecision, and the regressors are indicators for pictures (by order of appearance), feedback treatments, and the
interaction between the two. The red dashed line indicates the start of the second block. Bounds are 90% confidence
intervals. Standard errors are clustered at the individual level.

As a robustness check, examine the effect of feedback on average overprecision within

block, defined as:

diff overprecisioni =
1

5

(
10∑
k=6

overprecisioni,k −
5∑

k=1

overprecisioni,k

)
.

We find that this difference is negative for those who received Overprecise feedback (mean

= −1.65, p < 0.001, N = 475) and positive for those who received Underprecise feedback

(mean = 0.99, p < 0.001, N = 321). Overall, it is clear that feedback effectively shifts

participants’ over and underprecision.

Attention Costs

To assess whether decoys in information clouds increase attention costs, we compare

the Easy-Info and Hard-Info treatments using three proxies for information processing

costs. The first proxy measures belief adjustment after exposure to the information cloud
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Figure 6: CDF’s of the adjustment of the prior and error of the posterior across treatments
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Note: The left panel plots the CDF of the adjustment made to the prior after seeing the signal across the Easy-Info
(continuous line) and Hard-Info treatments (dotted line). The right panel plots the CDF of the error made by participants
in their posterior belief in the Easy-Info (continuous line) and Hard-Info treatments (dotted line). For readability, we limit
the horizontal axis of both figures to a maximum of 15 adjustments and error, Figure B.6 in Appendix C plots the figure
with the whole support.

(adjustmenti,k = |posteriori,k − priori,k|). If attention costs are higher in Hard-Info,

participants should adjust their posterior beliefs less than in Easy-Info. The second

proxy, measures posterior accuracy (errori,k = |correcti,k − posteriori,k|). If attention

costs are higher in Hard-Info, posterior estimates should be less accurate than in Easy-

Info. Finally, if attention costs are higher in Hard-Info, participants should spend more

time processing the information cloud (i.e., time cloudi,k) in Hard-Info than in Easy-Info.

Figure 6 plots the cumulative density functions (CDFs) of adjustmenti,k (left panel)

and errori,k (right panel), separated by treatment. Participants in the Easy-Info treat-

ment adjust their beliefs more, as indicated by the weak stochastic dominance of the

Easy-Info CDF over the Hard-Info CDF for adjustmenti,k. Similarly, the posterior be-

liefs are more accurate in Easy-Info, as the Hard-Info CDF weakly stochastically domi-

nates that of Easy-Info CDF for errori,k. We confirm these visual results by regressing

adjustmenti,k and errori,k on a treatment indicator with clustered errors at the individual

level and picture fixed effects. The estimated coefficient for Hard-Info is significant and

negative for adjustmenti,k (α̂ = −0.734, p < 0.01) and significant and positive for errori,k

(α̂ = 0.497, p < 0.01), consistent with higher attention costs under Hard-Info..

The interpretation of treatment effects on time cloudi,k is more nuanced, as higher

information processing costs may lead some participants to reduce their attention. Nev-

ertheless, Table 2 shows that the Hard-Info treatment is associated with significantly
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longer viewing times when controlling for outliers with median quantile or Huber ro-

bust regressions. Taken together, the evidence from all three time proxies supports the

interpretation that the Hard-Info treatment increases attention costs.

Table 2: Decoy signals and the information time

Dep. var.: time cloudi,k

(1) (2) (3)

OLS Median Robust

Hard-Info 0.716 1.426∗∗∗ 1.286∗∗∗

(1.144) (0.260) (0.192)

constant 18.078∗∗∗ 10.151∗∗∗ 10.451∗∗∗

(1.116) (0.318) (0.235)

Picture fixed effects Yes Yes Yes

N 6000 6000 6000

Notes: The table reports results from regressions in which time

spent looking at information is regressed on a treatment indicator and

picture fixed effects. Columns (1) to (3) report OLS estimates, median

quantile estimates, and robust regression (with Huber weights) estimates.

Standard errors are clustered at the individual level for (1). Asterisks

indicate results of two-tailed t-tests: * p < 0.1, ** p < 0.05, *** p < 0.01.

4.3 Treatment Effects on Belief Updating

Having shown that both treatments work as intended, we study thier effects on the up-

dating behavior of participants following the pre-registered regression:

posteriori,k − priori,k = α + (signalk − priori,k)×

(β0 + β1 ×Overprecise + β2 × Underprecise + β3 × Hard-Info+

β4 ×Overprecise× Hard-Info + β5 × Underprecise× Hard-Info)+

θj × picturek + εi,k. (6)

In this regression, participants’ belief revision (the dependent variable) is modeled as a

function of the difference between the signal (i.e., the average age in the information

cloud) and the prior, the treatment combination, and picture fixed effects.
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Equation (6) is motivated by our theoretical model, in which a Bayesian agent updates

beliefs as a weighted average of the prior and the signal:

posteriori,k = βi,k × signalk + (1− βi,k)× priori,k.

Rearranging the terms in equation (6) allows us to interpret the sum of β̂T as the update

rate for each given treatment combination T ∈ [0, 5].15

Table 3 reports the regression results based on equation (6).16 The main results are

in line with those reported in Table 1. First, participants in the benchmark group (No-

Feedback and Easy-Info treatments) place more weight on the signal than on their prior

belief, as indicated by β̂0 > 0.5. Second, participants who receive Overprecise feedback

(β̂1) update their beliefs significantly more than those without feedback. However, while

those who receive Underprecise feedback (β̂2) has a negative coefficient, as predicted by

our model, it is not statistically different from zero. One possible explanation could be the

smaller sample size of underprecise subjects (27%) or respondents react more strongly to

being told they are overprecise than to being told they are underprecise. Third, increasing

the cost of attention (β̂3) reduces the amount of belief updating. Taken together, these

results form the basis of the first set of results:

Result 1: Reducing overprecision increases the update rate, consistent with Hy-

pothesis 1.

Result 2: Increasing the cost of attention decreases the update rate, consistent

with Hypothesis 2.

15For example, the update rate for the combination of Hard-Info and Overprecise feedback treatments

is given by β̂ = β̂0 + β̂1 + β̂3 + β̂4.

16Since we pre-registered directional hypotheses, the reported t-test results are one-tailed.
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Table 3: Belief updating by treatments

(1) (2)

Revision Revision

β0 : signal − prior 0.595∗∗∗ 0.798∗∗∗

(0.028) (0.245)

β1 : Overprecise× (signal − prior) 0.065∗∗ 0.075∗∗

(0.037) (0.033)

β2 : Underprecise× (signal − prior) -0.012 -0.006

(0.041) (0.036)

β3 : Hard-Info× (signal − prior) -0.138∗∗∗ -0.130∗∗∗

(0.041) (0.034)

β4 : Overprecise× Hard-Info× (signal − prior) -0.011 -0.018

(0.056) (0.046)

β5 : Underprecise× Hard-Info× (signal − prior) 0.080 0.079

(0.061) (0.051)

α : constant 1.389∗∗∗ 2.014∗∗∗

(0.108) (1.079)

Picture fixed effects Yes Yes

Covariates No Yes

N 5946 5862

R2 0.57 0.58

Notes: The table reports results from OLS regressions in which belief revision is regressed on the

difference between the signal value and the prior, the treatment indicators, and their interaction. The

second column adds demographic covariates for the regression in the first column. Robust standard

errors clustered at the individual level are reported. Asterisks indicate the results of one-tailed

t-tests: * p < 0.1, ** p < 0.05, *** p < 0.01. β̂5 is in the opposite direction of the pre-registered

hypothesis, so the one-tailed test is not significant.

Our third hypothesis (Hypothesis 3) predicts that overprecision amplifies the nega-

tive impact of attention costs on belief updating. Specifically, we expect an interaction

between interventions that change overprecision (ω) and the marginal cost of informa-

tion processing (λ). However, we do not find evidence consistent with this prediction,
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as neither of the interaction estimates is statistically different from zero.17 Therefore, we

conclude that:

Result 3: We do not find evidence that overprecision amplifies the effect of attention

costs on update rates when the cost of attention changes.

Finally, our data shows an asymmetry between Underprecise and Overprecise feed-

back. As shown in Table 3 and the manipulation checks in Section 4.2, participants

are more responsive to Overprecise feedback than to Underprecise feedback. One likely

reason is that Overprecise feedback is perceived as more critical or surprising as it tells

participants they were more confident than they should have been, whereas Underprecise

feedback is more affirming and may feel less consequential. This difference in perceived

salience could explain the stronger response to Overprecise feedback. Moreover, this

pattern is consistent with Haaland et al. (2023), who emphasize that information inter-

ventions tend to have stronger effects when individuals’ prior beliefs are more misaligned

with the content of the message.18 Similarly, our results show that feedback significantly

shifts beliefs for participants who were initially overprecise, while it has little impact on

those who were underprecise. These two mechanisms—greater saliency of Overprecise

feedback and treatment effect heterogeneity—likely interact, suggesting that our inter-

vention primarily acts by correcting biased priors, with a particularly strong effect when

feedback is both surprising and negative.

Result 4: We find evidence that feedback interventions produce an asymmetric im-

pact. Overprecise feedback on participants’ calibration reduces their overprecision,

whereas Underprecise feedback has less influence on increasing it.

5 Discussion

Our findings indicate that reducing overprecision through feedback increases the update

rate, while raising attention costs via the Hard-Info treatment decreases it. These results

17Although a one-tailed test in the positive direction would yield significance at the 10% level for β̂5,
this was not the hypothesized effect.

18In our setting, Overprecise feedback challenges participants
’
Äô belief in the accuracy of their initial

estimates and confidence judgments, while Underprecise feedback largely confirms that participants were
cautious or uncertain.
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support our hypotheses that overprecision and attention costs independently influence

how participants revise their beliefs in response to new information. However, contrary to

our third hypothesis, the pre-registered regression model does not detect a statistically sig-

nificant interaction between overprecision and attention costs. One potential explanation

for the lack of an interaction effect is a violation of the ceteris paribus assumption. Our

feedback treatment, while intended to influence overprecision, may have unintentionally

affected participants’ perceptions of task complexity. In particular, underprecise partic-

ipants may have been nudged to perceive the task as “simpler” than anticipated (e.g.,

“This isn’t that hard after all”) by the Underprecise feedback, while overprecise partici-

pants may have been nudged into perceiving the task as “more complex” than anticipated

(e.g., “This is trickier than I thought”). These shifts introduce a confounding channel

through which feedback affects not only overprecision but also participants’ perception of

the environment’s difficulty, thereby altering their mental effort or attention allocation.

As a result, the hypothesized interaction between overprecision and attention costs—by

which overprecise individuals should respond more strongly to changes in information

costs—may be masked or dampened as we are measuring a conflation of the direct effect

of shifting overprecision and a secondary effect stemming from changes in perceived task

complexity (see Appendix B for a graphical example).

To empirically evaluate this explanation, we look at the post-experimental survey,

where we included a question on the perceived task difficulty. Specifically, we asked

participants:

”How difficult was it for you to view (visually) the pictures and word clouds

with the information we showed you in the survey?”,

where the responses (difficultyi) are on a Likert scale (1: Not at all difficult - 5: Very

difficult).

Table 4 presents the results of regressing difficultyi on treatment indicators, their

interactions, and demographic controls. The estimates show that participants who re-

ceived Overprecise feedback perceived the task as significantly more complex, suggesting

a shift in perceived complexity. Moreover, the absence of interaction effects between the

difficulty and Overprecise feedback treatment suggests that feedback alone had a uni-

form effect across all participants. This broad shift in perceived difficulty may prompt

individuals to see everything as more complex, thereby altering their priors, effort, or
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level of caution in ways that the original difference-based specification of eq. (6) cannot

disentangle.

Table 4: Self-reported difficulty of task by treatments

(1) (2)

difficulty difficulty

Hard-info 0.189∗ 0.191∗

(0.114) (0.114)

Overprecise 0.344∗∗∗ 0.346∗∗∗

(0.113) (0.114)

Underprecise -0.023 0.001

(0.106) (0.107)

Hard-info × Overprecise -0.201 -0.206

(0.160) (0.161)

Hard-info × Underprecise -0.180 -0.204

(0.159) (0.160)

Constant 2.059∗∗∗ 2.573∗∗∗

(0.077) (0.271)

N 1195 1183

R2 0.02 0.03

Covariates No Yes

Notes: The table reports results from a OLS regression in which

self-reported difficulty of the task is regressed on treatment indicators

and their interactions. The second column adds demographic

covariates for the regression in the first column. Robust standard

errors clustered at the individual level are reported. Asterisks indicate

the results of two-tailed t-tests: * p < 0.1, ** p < 0.05, *** p < 0.01.

To address this problem, rather than relying on the coarse treatment-control compar-

ison, we adopt a more granular “update ratio” (Ui,k) as:

Ui,k =
posteriori,k − priori,k
signalk − priori,k

. (7)
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This ratio measure is conceptually closer to the theoretical parameter β in eq. 1, as it can

be interpreted directly as the Bayesian weight on the signal.19 Focusing on Ui,k allows us

to isolate responsiveness to new information by capturing the fraction of the gap between

the prior and the signal that is closed by the posterior.

Moreover, Ui,k serves as a self-normalizing metric as it compares belief revision not to a

fixed prior, but to the prior that participants hold after receiving feedback. Regardless of

whether feedback changes participants’ perception of the task difficulty, the denominator

signalk − priori,k adapts accordingly, allowing us to measure their responsiveness to the

signal. For example, if Overprecise feedback causes a participant to anchor their priors

closer to the midpoint of 50 years (perhaps because now the task seems harder), Ui,k still

captures how far their posterior moves relative to the prior, preserving interpretability.

In this way, Ui,k remains a valid proxy for the theoretical weight βi even when attitudes

toward the task shift. While both the update ratio and the average overprecision are

measured after the feedback intervention, and therefore cannot be used to identify causal

effects per se, their interaction provides insights into the mechanism itself. Specifically,

we interpret the observed relationship between post-feedback overprecision and updating

behavior as evidence that overprecision modulates responsiveness to complex information,

consistent with the model’s predictions. In this sense, Ui,k allows us to recover the the-

oretically predicted interaction that remained undetected in the coarser, treatment-level

difference-in-differences approach.

We then estimate the model:

Ui,k = α + γ1 · avg opi + γ2 · (avg opi ×Hard-Infoi) + picturek + εi,k, (8)

where avg opi is the average overprecision of participant i across the five pictures of block

2, Hard-Infoi is a dummy variable equal to one if the participant was assigned to the

Hard-Info condition, and picturek a dummy identifying each picture k. The coefficients

γ1 and γ2 capture, respectively, the direct effect of overprecision and its interaction with

processing costs. Since Ui,k directly proxies for βi,k, any reduction in the update ratio

under high-cost conditions for participants with higher overprecision supports the the-

oretical amplification effect described in Section 2. Another advantage of this model is

19From eq. 1 we have that posteriori,k = βi,k · signalk + (1− βi,k) · priori,k, which can be rearranged

as the update ratio
posteriori,k−priori,k

signalk−priori,k
= βi,k = Ui,k.
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that it provides us with a direct test of whether the “update weight” (Ui,k) responds to

overprecision and its interaction with processing costs.

Table 5 reports the results using OLS, a quantile regression, and a Huber-robust re-

gression. Across all specifications, we find a robust and statistically significant negative

interaction between overprevision and the Hard-info treatment, confirming Hypothesis

3. While, the main effect of average overprecision is small and statistically insignificant,

this might be because when information is easy to process, even overprecise respondents

remain responsive to the signal. It is only when processing costs are high that overpre-

cision meaningfully reduces responsiveness. This result provides direct evidence for the

mechanism of irrational inattention, as overprecision amplifies the effect of information

complexity on belief updating.

It is important to understand the difference in findings between the pre-registered

model and the granular update-ratio approach. The former estimates average treatment

effects across experimental groups and detects direct effects of feedback and information

complexity on belief updating. However, it does not account for variation in overprecision

within treatment groups. As a result, it may attribute part of the effect of overprecision

to the treatment itself, capturing it as a direct effect. By contrast, the update ratio model

normalizes how far individuals move relative to the prior-signal gap and explicitly isolates

individual overprecision and its interaction with information complexity. In doing so, it

reveals that overprecision alone does not consistently reduce updating; its effect emerges

only when processing costs are high.
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Table 5: Updating Treatment Interaction

(1) (2) (3)

update update update

avg op 0.029 0.005 0.002

(0.025) (0.004) (0.003)

hard info -0.117 -0.099∗∗∗ -0.075∗∗∗

(0.178) (0.026) (0.019)

hard info× avg op -0.089∗∗ -0.018∗∗∗ -0.011∗∗

(0.042) (0.006) (0.005)

constant 0.759∗∗∗ 0.758∗∗∗ 0.686∗∗∗

(0.114) (0.030) (0.023)

N 6000 6000 6000

Notes: OLS, quantile regression, and Huber robust regressions of the “up-

date ratio” on the average overprecision of participants (overprecisioni),

the information treatment (hardinfoi), and picture fixed effects (not

reported). Errors clustered at the individual level in the OLS. Asterisks

indicate the results of two-tailed t-tests: * p < 0.2, ** p < 0.1, *** p < 0.05.

Finally, as a complementary test of our model, we examine whether the interaction

between overprecision and the information costs affect the accuracy of participants’ re-

sponses. After all, if reduced updating reflects irrational inattention, it should result not

only in lower responsiveness to the signal (as shown in Table 5), but also in less accu-

rate final beliefs. Table 6 reports the results of regressing the absolute posterior error on

overprecision, the information treatment dummy, and its interaction. We find a positive

and statistically significant interaction between overprecision in the robust specifications

(columns (2) and (3)). That is, once we control for extreme values, participants who

are both overprecise and assigned to the Hard-Info treatment make systematically larger

mistakes, providing further evidence that overprecision leads to information loss when

signal processing is costly, consistent with the lower update ratio shown in Table 5 and

with Hypothesis 3.
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Table 6: Posterior Absolute Error Interaction

(1) (2) (3)

error error error

avg op 0.149∗∗ 0.061∗∗ 0.069∗∗∗

(0.065) (0.025) (0.017)

hard info 0.386 0.140 0.020

(0.374) (0.132) (0.090)

hard info× avg op 0.049 0.183∗∗∗ 0.148∗∗∗

(0.171) (0.035) (0.024)

constant 2.668∗∗∗ 1.933∗∗∗ 2.474∗∗∗

(0.161) (0.146) (0.100)

N 5962 5962 5962

Notes: OLS, quantile regression, and Huber robust regressions of

the absolute error in the posterior on the average overprecision of

participants (overprecisioni), the information treatment (hardinfoi),

and picture fixed effects (not reported). Errors clustered at the individual

level in the OLS. Asterisks indicate the results of two-tailed t-tests: *

p < 0.2, ** p < 0.1, *** p < 0.02.

6 Conclusion

This paper identifies overprecision as a source of irrational inattention. In our model,

overprecise agents overestimate the precision of their information. This bias distorts the

cost-benefit analysis of paying attention to new information. As a result, overprecision

leads to suboptimal levels of inattention.

Our model’s novelty lies in integrating overprecision within the rational inattention

framework. Traditional models of rational inattention assume agents are unbiased in

evaluating both prior information and processing costs. By relaxing this assumption, our

model introduces a two-layered bias: first, because agents are overprecise, they overes-

timate the accuracy of their prior beliefs. Second, this distortion in prior beliefs leads

agents to underweight the value of new signals, resulting in a misallocation of attention
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resources. This dual distortion not only reduces responsiveness to new information among

overprecise agents but also amplifies the effects of information complexity. An important

implication of our model is that, while standard inattention can be mitigated by increas-

ing incentives for accuracy, overprecision distorts belief updating even when stakes are

high. This distinction highlights the unique challenge of irrational inattention and the

negative impact that overprecision can have on individual’s daily life (Bosch-Rosa et al.,

2024).

We test our model’s predictions using a novel 2x2 pre-registered experiment that

independently manipulates overprecision and attention costs. By shocking subjects’ over-

precision through feedback and manipulating informational complexity, we provide causal

evidence of the impact that overprecision has on belief updating. Specifically, we show

that reducing overprecision via feedback increases responsiveness to information while

increasing attentional costs diminishes it. However, we do not detect a significant inter-

action between overprecision and attention costs. In an exploratory analysis, we provide

evidence that the null result is likely due to the unintended effect of feedback on partic-

ipants’ task complexity: informing participants that they were overprecise not only has

an impact on their overprecision, but also shifts the perceived complexity of the task,

which confounds our pre-registered model. To address this, we move beyond binary treat-

ment comparisons and estimate a more granular model that isolates belief updating by

directly linking the extent of belief updating toward the signal to participants’ level of

overprecision. Using this approach, we find that overprecise participants become espe-

cially inattentive when information is costly to process, confirming the core mechanism

of irrational inattention.

Overall, our paper contributes both to the theoretical and empirical literature on

rational inattention, offering a novel approach to how cognitive biases influence decision-

making under information constraints. On the theoretical side, we present a structured

framework that integrates overprecision, a well-documented behavioral basis, into a ratio-

nal inattention model. Our model suggests that what has traditionally been considered

”rational” inattention may, in fact, be irrational when agents hold biased priors, as this

leads them to underweight new information even when it is valuable and accessible. An

important implication of our model is that while standard inattention can be mitigated by

increasing incentives, overprecision resists such interventions, highlighting the importance
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for policy makers to understand the channel that drives individuals to be inattentive.

Empirically, we provide strong evidence that overprecision can be reduced through

feedback. While previous studies have documented the presence of overprecision in var-

ious domains (e.g., Moore, 2022; Bosch-Rosa et al., 2024), few have explored whether

and how it can be corrected, particularly in contexts involving real-time decision-making

under uncertainty. Our results show that targeted feedback effectively recalibrates par-

ticipants’ priors, reducing overprecision and, consequently, increasing responsiveness to

new information. Moreover, the ability to experimentally induce changes in overprecision

allows us to causally identify how biased priors affect attention allocation—confirming

our theoretical results and demonstrating the presence of irrational inattention, a type of

inattention driven by biased beliefs rather than rational cost-benefit considerations alone.
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A Additional Tables

Table A.1: Demographic characteristics of the sample

Sample Census†

age 44.49 44.6

(14.25)

female 0.504 0.507

(0.500)

German 0.938 0.854

(0.242)

eastern states 0.196 0.194

(0.397)

university degree (or more) 0.312 0.335

(0.463)

(0.496)

N 1200

Notes: East refers to people living in Berlin, Brandenburg,

Mecklenburg-Vorpommern, Sachsen, Sachsen-Anhalt, or Thürin-

gen. †: Census data are from Destatis and are as of 2022, except

for education statistics, which are as of 2019, and for the adult

population (age≥ 15). Standard deviations are shown below the

means.
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B Ceteris Paribus

Figure B.1: Optimal updating if feedback treatment had secondary effects on cost of attention
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Figure B.1 illustrates the case where feedback treatment has secondary effects on cost

of attention. Consider an overprecise participant positioned on the dotted line (point

A) who receives feedback in the Overprecise treatment. We predict that this participant

would decrease their overprecision and increase their update rate (point B). However, the

“task-is-harder-than-I-thought” effect might lead the participant to update less due to

cost of attention (point C). If true, this pattern might explain the lack of an interaction

effect.

C Additional Figures
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Figure B.2: Density of the prior beliefs for each picture
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Notes: The vertical red line marks the correct answer. Note that the vertical axis differs for each question.
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Figure B.3: Change in overprecision across blocks by feedback type
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Notes: The figure shows the density of the difference in average overprecision (binary) between the pictures in the second
and first blocks.
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Figure B.4: Density of the answers for each picture. The vertical red line marks the correct answer.
Note that the vertical axis is the same for all graphs.
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Figure B.5: Density of the answers for each picture. The vertical red line marks the correct answer.
Note that the vertical axis differs for each question.
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Figure B.6: CDF’s of the adjustment of the prior and error of the posterior across treatments
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Note: The left panel plots the CDF of the adjustment made to the prior after seeing the signal across the Easy-Info
(continuous line) and Hard-Info treatments (dotted line). The right panel plots the CDF of the error made by participants
in their posterior belief in the Easy-Info (continuous line) and Hard-Info treatments (dotted line).

42



D Experimental Material

D.1 Pictures

D.1.1 First Block

Figure C.1: The Solvay Conference (1927)

Figure C.2: The Band Aid (1984)
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Figure C.3: The Cabinet of the US President B. Obama (2009)

Figure C.4: 75th Anniversary of Paramount (1987)

Figure C.5: The Chinese-German Consultations (2023)
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D.1.2 Second Block

Figure C.6: G20 Hamburg Summit (2017)

Figure C.7: The Irascibles (1951)
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Figure C.8: The Australian Labor Party (1901)

Figure C.9: The Cabinet of German Chancelier A. Merkel (2019)

Figure C.10: The British Royal Family (2007)
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