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1 Introduction

Hotelling’s seminal paper “Stability in Competition” (Hotelling, 1929) characterized the

stylized fact that individuals buy commodities from different sellers despite modest dif-

ferences in price. The model is often taught and discussed as a simple location model in

which firms decide how to position their product in a linear product space and has been

adapted to numerous phenomena; from voting habits (Downs, 1957) to entry deterrence

(Schmalensee, 1978) to competition in various industries (Baum and Mezias, 1992 for

hotels, Calem and Rizzo, 1995 for hospitals, or Iyer et al., 2014 for religions).

In the classic setup, firms face a constant price and a uniformly distributed mass of

consumers who can buy at most one unit from one of the firms. The utility function

of consumers decreases linearly with distance, so they purchase the homogeneous good

from the closest vendor. This means that with two firms in the market, these will locate

back-to-back at the midpoint (i.e., the two firms will produce identical products). This

outcome is known as the principle of minimum differentiation.

However, Hotelling’s location model for two firms is extremely sensitive to small

changes in the set of assumptions. For example, Eaton and Lipsey (1975) detail equilibria

for more than two players and show that minimum differentiation does not generalize

easily, even if local clustering tends to emerge. In a similar vein, Hotelling suggested, but

did not prove, that his spatial competition model would also lead to a price equilibrium

between firms. This suggestion has since been proven incorrect, as firms can always im-

prove profits by moving to a new position after a competitor moves, be it a new location

or a new price point (see D’Aspremont et al., 1979).1

The absence of a pure strategy Nash equilibrium in the Hotelling (1929) original setup

motivates our empirical work as we turn to the laboratory to test Hotelling’s intuition.

To do so, we design a continuous-time experiment in which pairs of anonymously matched

subjects can adjust both their price and location during four-minute periods. Using a new

interactive interface, subjects can instantly move across the whole price-location strategy,

with payoffs depending on their instantaneous price-location position relative to their

counterpart. This continuous-time setup allows us to adhere closely to the original model

1In fact, in this same paper D’Aspremont shows that in an environment with quadratic costs and a
price-location strategy space, firms will tend to maximize differentiation.
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and question whether Hotelling’s Law — another name for the principle of minimum

differentiation — holds.

A recent series of papers have underlined the differences between continuous- and

discrete-time setups (e.g., Calford and Oprea, 2017) and have shown that, among other

things, continuous-time setups have either cooperation rate effects (Friedman and Oprea,

2012) or endgame effects (Bigoni et al., 2015; Friedman et al., 2015). In fact, Kephart

and Friedman (2015) and Huck et al. (2002) show that in a four-player Hotelling setup

with no price differentiation, subjects converge to the Nash equilibrium in continuous-time

sessions but not in discrete-time ones. The ability of firms to quickly adjust to changes

in the market is not only important from a theoretical point of view but is also relevant

beyond the laboratory, where different markets allow for very different response times.2

To study such differences, in our experiment we introduce three different treatments that

vary in how often subjects are allowed to adjust their position. The first treatment is the

Continuous Instant (CI), where subjects can instantly change their price and location. The

second is the Continuous Slow (CS), where any change on the price-location coordinates

is slowly implemented. Finally, in the Discrete Slow (DS) subjects are only allowed to

make changes every three seconds.

Our results indicate that despite the theoretical ambiguity suggesting otherwise, Hotelling’s

principle of minimum differentiation largely holds. As expected, subjects achieve higher

price and space coordination levels in the continuous-time setup than in the two slower

adjustment rate treatments. However, we also find that the relationship between colluding

and the ability to collude is non-monotonic. While a priori collusion should be harder in

the DS treatment (see Section 3 for treatment details), the CS treatment results in lower

prices (i.e., a more competitive environment) and overall lower payoffs for both subjects.

This result highlights how sensitive collusive markets are to their different dimensions.

From the experimental point of view, there have been several attempts to study

Hotelling’s model. Brown-Kruse and Schenk (2000) investigated a two-player uncertain

endpoint model but focused on the effect of communication on collusion. As referenced

above, Huck et al. (2002) were the first to test a four-person Hotelling game but found

2Take two extreme examples. Advances in algorithmic trading allow financial investors to react almost
instantly to any news or price changes. Conversely, the toilet paper industry could not adjust to the
sudden spike in demand that resulted from the first weeks of panic during the coronavirus pandemic.
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little support for the equilibrium hypothesis. Kephart (2014) showed that the four-player

Nash equilibrium emerged more quickly with the ability to adjust location instantly.3

However, few authors have included vertical differentiation in their experimental set-

ting. To our knowledge, only three works have tested a setup with both price and lo-

cation as choice variables. The first attempt was by Mangani and Patelli (2002), who

specified their model with quadratic transport costs such that subjects should maximally

differentiate in the location dimension to relax price competition. Kusztelak (2011) also

used quadratic transport costs and allowed for limited communication between subjects.

Barreda et al. (2011) tested the hypothesis that firms use product differentiation to relax

price competition by focusing on a limited, discrete location decision. Specifically, subjects

could only choose among either seven or eight location slots, depending on the treatment.

In their most relevant treatments, the authors found less product differentiation than

theory would predict and relatively few high prices.

This paper is the first to implement Hotelling’s spatial competition setup with linear

distance costs and price competition using a continuous bi-dimensional strategic space and

a continuous-time setup.4 Therefore, our framework allows us to make three contributions

to the literature. First, our experimental design is very close to the original two-player

Hotelling model with horizontal and vertical decision variables and linear transport costs,

which allows us to study how Hotelling’s seminal result fares in an ideal setting. Second,

by having three different treatments, our experiment blurs the sharp distinction between

the continuous choice model and sequential models, providing insight into how the ability

to adjust quickly affects firm behavior. Third, we use an intuitive interface that allows

subjects to interact using a fine grid of options, dissipating any concerns of participant

apprehension skewing results in the competitive setting.5

The remainder of the paper proceeds as follows: In Section 2 we provide a brief

overview of the theoretical setup of our experiment. In Section 3 describes the experi-

3The four-player location-only game has its own form of the principle of minimum differentiation as
the equilibrium, with players located back-to-back on the first and third quartiles.

4While Kephart and Friedman (2015) implemented a continuous-time Hotelling experiment before we
did, they only had one dimension (space) in their setup. Similarly, while Barreda et al. (2011) ran a
two-dimensional Hotelling experiment, they did so using a discrete location and time setup.

5See Bosch-Rosa et al. (2018) or Bosch-Rosa and Meissner (2020) for the effects of experimental
complexity in two very different setups.
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mental setup. Section 4 reports the results of the experiment and we conclude in Section

5.

2 Model and Predictions

We begin by recalling Hotelling’s assumptions following D’Aspremont et al. (1979)’s nota-

tion. In it, two firms (A and B) sell a homogeneous product with zero production cost to

customers who are evenly distributed on a line of length l.6 Each customer consumes one

unit of the good and will buy from the seller who gives the least delivered price. Firms

locate at points a and b, respectively, such that a is the distance from 0, b is the distance

from l, a + b ≤ l, with a ≥ 0 and b ≥ 0. For simplicity, we normalize l to be 1 in our

experiment. Firms also set prices pA and pB, respectively. Transport costs are linear and

are denoted by c.

First, consider the case that price and location are chosen simultaneously. The payoff

functions for A and B are given by

πA(pA, pB, a, b) =


apA + 1

2
(l − a− b)pA + 1

2c
pApB − 1

2
p2A if |pA − pB| ≤ c(l − a− b)

lpA if pA < pB − c(l − a− b)

0 if pA > pB + c(l − a− b)

πB(pA, pB, a, b) =


bpB + 1

2
(l − a− b)pB + 1

2c
pApB − 1

2
p2B if |pA − pB| ≤ c(l − a− b)

lpB if pB < pA − c(l − a− b)

0 if pB > pA + c(l − a− b).

Figure 1 shows a graphical representation of each of the three cases. On the horizontal

axis, the firms change their location, while in the vertical axis they can change their

prices. The red and blue dots represent the location of firm A and B (respectively), and

the diagonal dotted lines represent the cost of consumers to purchase their product. In

the leftmost example Pa = Pb, and both firms share (unevenly) the mass of consumers. In

the center case, A sells to all consumers since Pb is so high that consumers at B’s location

6Our experiment only examines the two-player game, but the setup can be generalized to n sellers.
See Brenner (2005) for a derivation of the model with more than two players.
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(b) will prefer to purchase from A. In the last case, Pa is too high, and all consumers,

even those located at a, will prefer to consume B’s product, leaving A with no payoffs.

Figure 2 presents a specific example of the profit function faced by firms in our setup.

The right panel shows the profit function of A when it varies its price (pA) between 0

and 1 while located at a = 0.25, with firm B at 0.6 → b = (1 − 0.6) = 0.4 with a fixed

price of pB = 0.5 and l = c = 1 (see left panel in 2). As shown in the right panel, as pa

increases, A transitions from controlling the entire territory (pa ∈ [0, 0.15)) to possessing

a portion of the market jointly with B (pa ∈ [0.15, 0.85]) to finally holding no market

(pa ∈ (0.85, 1]).

0                          
l

Pr
ic

e

pA

                a                                             b

player A’s territory

|pA - pB| ≤ c(l - a - b)

0                          l

Pr
ic

e

pA

                a               b                              

player A’s territory
player B has no territory 

pA < pB - c(l - a - b)

0                          l
Pr

ic
e

pA

                a    b                                             

player A has no territory

pA > pB + c(l - a - b)

Figure 1: Three examples of how A and B can share the mass of consumers. In all cases, the dots
represent the firms’ location, and the dashed lines emanating from each firm’s location represent the
total cost (transport costs plus price) to consumers along the horizontal axis. In the leftmost case, A
and B have the same price and share the consumers. In the middle case, B has set the price (pb) so high
that not even consumers at B’s location (b) purchase goods from B. In the rightmost case, B has set the
prices so low that even consumers at A’s location (a) consume only products from B.

These profit functions are discontinuous at the points where the delivered price of one

firm is equal to the price of a rival at the rival’s location. At these points, a whole group

of consumers will be indifferent between the two firms. D’Aspremont et al. (1979) show

that there is a Nash-Cournot equilibrium point only if sellers are sufficiently far from each

other or such that (
l +

a− b
3

)2

≥ 4

3
(a+ 2b)l, (1)

(
l +

b− a
3

)2

≥ 4

3
(b+ 2a)l. (2)

Take as an example any case of symmetric positioning where the sufficient conditions (1)

and (2) simplify down to a = b ≤ l/4—i.e., players are located outside of the first and

third quartiles, respectively—-and the Nash-Cournot equilibrium price for both players is
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Figure 2: Payoff function for A. On the left panel, we fix A at location a=0.25 and B at b=0.6 with a
price pb = 0.5. In the right panel we plot the payoff of A as Pa fluctuates between 0 and 1, given the
conditions of the left panel. The vertical drops are discontinuities in the payoff function of A.

p∗a = p∗b = 1. However, as Hotelling remarked, if conditions (1) and (2) hold, then both

∂πA(p∗a, p
∗
b)/∂a and ∂πB(p∗a, p

∗
b)/∂b are strictly positive, implying that each firm should

move closer to its rival.7

In other words, when sellers locate close to each other, it is optimal for them to un-

dercut each other’s price and capture the entire market. But if (1) and (2) hold (i.e.,

when sellers are far enough), then each firm has the temptation to move closer to her

rival to capture their space. However, circularly, once the firms are relatively close to one

another, (1) and (2) are violated, implying a Nash equilibrium does not exist. This lack

of an equilibrium translates into subjects following each other closely in the action space,

with frequent adjustments to their price and location, and a large volatility in profits. Of

course, subjects gain higher profits from collusion; however, there are always incentives

to cheat.8 This behavior mirrors the classic prisoner’s dilemma, albeit with far more

7D’Aspremont et al. (1979) show that for any p∗2 to be an equilibrium strategy against p∗2 given a and

b, then πA(p∗1, p
∗
2) = c

2 (l +
a− b

3
)
2

≥ l(p∗2 − c(l − a − b) − ε), which can be rewritten as condition (1),

with a complementary expression for condition (2). If these are verified, then ∂πA(p∗A, p
∗
B)/∂a > 0 and

∂πB(p∗A, p
∗
B)/∂b > 0.

8A possible evasion of this problem is to characterize the setup as a two-stage game, where firms
first simultaneously choose a location and then simultaneously choose a price (with full information).
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intermediate outcomes. Friedman and Oprea (2012) showed that continuous-time treat-

ments greatly increase cooperation; as such, we would predict successful non-competitive

behavior to be much more prevalent with fewer restrictions on adjustment. More gener-

ally, moving from discrete to continuous time can substantially affect strategic interaction

(Simon and Stinchcombe, 1989), but cooperation is more likely to be sustainable when it

can be supported by an equilibrium (Dal Bó and Fréchette, 2018).

3 Experimental Design

The experiment was performed in sessions differing only in the timing of the game. We

study three treatments: DS, CI, and CS. Sessions included only one of the treatments

and consisted of 2 practice periods followed by 12 potentially paid periods. Subjects were

randomly matched into two-person pairs and were re-matched with a new counterpart

each period. To avoid endgame effects, periods lasted four to five minutes with random

endings. Sessions contained six participants, and subjects could be re-matched to any

other subject at the start of another period.

Figure 3 presents the user interface for the continuous (panel 3a) and discrete cases

(panel 3b). In all treatments, participants chose their location and price by clicking in

the x-y action space, represented at the left of the user interface. The action selections

could be made with pixel precision. In some previous laboratory investigations, action

selection grids have been limited from the single digits to several dozen discrete actions

available. Our implementation—with several hundred thousand available x-y coordinates

available to participants—approximates continuous action selection far more closely.9

In the DS treatment, subjects played an n-stage game in which location is selected

first, followed by price with full information about location decisions. Subjects were given

three seconds to choose their location, indicated by a progress bar on the top of their

computer screen.10 The screen then adjusted to reflect the location the subject and her

counterpart chose, and subjects were given three seconds to choose a price, again indicated

Dasgupta and Maskin (1986) prove that each price-setting stage has an equilibrium in mixed strategies,
however Osborne and Pitchik (1987) cannot characterize them.

9We implement an action space of 425 square pixels, resulting in about 180,000 potential location and
price combinations available to subjects.

10Across all treatments, subjects could select their starting at the beginning of each period.
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(a) Continuous Time (b) Discrete Time

Figure 3: User Interfaces for the continuous and discrete treatments.

by a progress bar. We define these three-second intervals as subperiods. Subjects had

four subperiods of price decisions before they were allowed to readjust the location.11

Panel 3b shows the user interface for the DS treatment. “Flow” payoffs are shown

as bars on the right of the interface and are updated after every subperiod. The blue

dot indicates the subject’s position in the last subperiod, while the red dot indicates

the counterpart’s position. The black line shows the subject’s current choice for that

subperiod, while the gray line simply follows the mouse. The user interface included the

linear transport costs running away from their position, the cutoff that determined the

edge of the area they control, and a shaded region showing the area they control.

In the CI treatment, subjects chose both location and price freely and instanta-

neously.12 Panel 3a shows the user interface for this treatment. Flow payoffs are shown

to the right of the interface and are updated continuously. The blue dot indicates the

subject’s current position, and the pink dot shows her counterpart’s current position. The

gray crosshairs simply follow the mouse.

11In pilot sessions, we also ran treatments in which location- and price-setting subperiods alternated,
with no discernible difference in subject behavior. These pilot sessions also allowed us to calibrate the
length of time subjects were given for adjustment decisions, with three seconds deemed long enough to
process and move their position in the action space without disengaging during subperiods.

12The latency between a subject’s click and seeing the action on the computer screen was around 50
milliseconds, or far faster than human reaction time. This latency did increase slightly during periods of
very frequent position adjustment by subjects but not above tolerable levels that would disrupt subject
behavior.

9



The CS treatment is identical to the CI treatment except for a “speed limit” on

subject movement in the action space. When a subject chose a new location and price

coordinate, a gray dot appeared at that location while her actual position adjusted slowly

to that point. If a subject wanted to change direction while her position was adjusting, a

new gray dot appeared, and her position immediately began to adjust to the new target.

As an analog to the discrete-time treatment, the subject position could be adjusted four

times quicker on the price dimension than on the location dimension.

Our subject pool comprised 72 undergraduates from all major disciplines at the Uni-

versity of California Santa Cruz.13 Subjects were invited through ORSEE (Greiner, 2015),

and the sessions were programmed and run using ConG (Pettit et al., 2014). None of the

subjects had previous experience with Hotelling experiments in our lab. Upon entering,

subjects were randomly seated and the instructions were read aloud. Subjects then saw a

short silent instructional video with on-screen text, which was read aloud as it appeared.

Pink noise—a full-frequency audio process used to mask ambient noises—was played in

the background to prevent subjects from hearing the mouse clicking of other subjects.

Sessions lasted 80–90 minutes each, and subjects were paid their point total multiplied by

$20 for two periods, which were decided by an overt dice roll by one of the participants.

Average earnings across all types of sessions were $16.21 (a breakdown by treatment is

available in Table 7 of Appendix A).14

4 Results

4.1 Subject Price and Location Decisions

Figure 4 shows heat maps of all players’ price and location decisions by treatment, respec-

tively. In these figures, “hotter” colors mean players spent more time in these positions,

while “cooler” colors indicate little time was spent in that area of the action space. The

most striking feature of these figures is the heat distribution between continuous- and

13This is in line with the numbers used in other comparable continuous-time experimental setups. For
example, Friedman et al. (2015) also have 72 subjects, Kephart and Friedman (2015) uses 52 subjects,
Bosch-Rosa (2018) 92, and Magnani and Munro (2020) has 80.

14Due to a computer glitch, we are missing the data for group 2 in period 9 of session 4 of the CI
treatment. This would represent around 5,000 observations out of a total of 1,500,000 (i.e., 0.33 percent
of the data).
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Discrete (DS) Continuous Slow (CS) Continuous (CI) Instant

Mean 0.575 0.468 0.588
Price

SD 0.281 0.271 0.266

Mean 0.255 0.215 0.273
Payoff

SD 0.218 0.199 0.219

Mean 0.542 0.509 0.534
Location

SD 0.247 0.170 0.186

Table 1: Mean and standard Deviation of the price, payoff, and location for each treatment.

discrete-time treatments. Subject’s positions are clearly more concentrated in continuous-

time treatments, with discrete-time positions more evenly distributed in the action space.

At the same time, in continuous-time treatments players tended to be centrally located

on the x-dimension, while price positions vary more by treatment. It is also clear from

Figure 4 that prices were highest in the CI treatment and lowest in the CS treatment.

To analyze the data of the continuous-time sessions we follow Kephart and Friedman

(2015) and use 100 milliseconds as our unit of time (tick), which leaves us with 600

observations for each minute of play. Table 1 provides basic summary statistics of the

mean instant payoff (payoffi,p,t) for subject i in period p at time t and price (pricei,p,t),

and location (locationi,p,t) across treatments. As is clear in Figure 4, in the CI treatment

subjects have the highest average prices and profits of any treatment. When subjects

can adjust price quickly but not location, prices are lower than with instant adjustment,

and median payoffs are the lowest of any treatment. For comparison, if both subjects

exhibited joint profit-maximizing behavior, prices would be equal to 1 and profits would

be equal to 0.5 for each pair’s subject.

In Table 2 we present the results of an OLS regression of the price choices of subjects

at each tick (pricei,p,t) (columns (1) and (2)), the instantaneous payoffs of each subject

at each tick (payoffi,p,t) (columns (3) and (4)), and the location of subjects at each tick

(locationi,p,t) (columns (5) and (6)) on a dummy for each of the three treatments where CI

is the baseline treatment. The results show that both price and payoffs tend to be lower in

the CS and DS treatments than in the CI treatments, although these differences are only

statistically significant at the 5 percent level for the CS treatment. This result confirms

what we saw in Figure 4 and Table 1: subjects achieve higher levels of collusion (i.e.,

11



Location

P
ric

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Discrete

(a)

Location
P

ric
e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Continuous Slow

(b)

Location

P
ric

e

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Continuous Instant

(c)

Figure 4: Heat Maps of Subject Price and Location Decisions by Treatment. The figure shows price
and location decisions by treatment. The heat maps run from cool to hot colors, with “hotter” colors
indicating that players spent more time in those positions.

higher prices and payoffs) when they can respond rapidly to their counterpart’s actions.15

Also confirming what we saw in Figure 4: there seems to be no effects of the treatments

15The differences in payoffs are available in Figure 7 in Appendix A, where we plot the cumulative
density functions of the final payoffs for each treatment.

12



price payoff location

(1) (2) (3) (4) (5) (6)

Continuous Slow (CS) –0.120∗∗ –0.119∗∗ –0.0589∗∗ –0.0587∗∗ –0.0254 –0.0253
(0.0517) (0.0518) (0.0262) (0.0262) (0.0168) (0.0168)

Discrete (DS) –0.0131 –0.0127 –0.0184 –0.0182 0.00815 0.00819
(0.0628) (0.0628) (0.0330) (0.0331) (0.0150) (0.0150)

Constant 0.589∗∗∗ 0.626∗∗∗ 0.274∗∗∗ 0.291∗∗∗ 0.535∗∗∗ 0.532∗∗∗

(0.0411) (0.0379) (0.0216) (0.0204) (0.00710) (0.00802)

N 1,545,168 1,545,168 1,545,168 1,545,168 1,545,168 1,545,168
Period FE No Yes No Yes No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 2: Least Square with Fixed Effects. In the first two columns, we regress price for each subject
at each tick (price) on dummies for the different treatments. In columns (3) and (4) we regress the the
instantaneous payoffs of each subject at each tick (payoff), while in columns (5) and (6) the dependent
variable is the location of each subject at each tick location. All standard errors are robust and clustered
at the session level.

on locationi,p,t, with the intercept being around 0.5 (i.e., minimum differentiation).

To study how subjects coordinate in each treatment, we define three different measures

of distance between subjects.The first one is based on the distance between subjects on

the location axis (LocationDistanceg,p,t) for each group g in each period p at time t. The

second measure is the distance on the price axis (PriceDistanceg,p,t) for each group g

in each period p at time t, and the last one is the Euclidean distance between subjects

(EuclideanDistanceg,p,t) for each group g in each period p at time t.16 Both axes are

scaled to one such that a distance of 0.1 is very close to the other player, while a distance

of 0.5 is quite far from the counterpart.

Table 3 presents summary statistics on different measures of distance between subject

pairs. Subjects were much closer together on all measures of distance in the continuous-

time treatments such that the discrete stage game tended to push subjects apart in the

action space. This can be seen easily in Figure 4’s heat maps. Price distance is con-

sistently smaller across treatments, even in the continuous-time treatment that did not

inhibit location adjustment in any way. Appendix B shows and discusses the vector fields

resulting from subjects’ movement decisions.

16The Euclidean distance is the linear distance (on the plane) between both subjects,
which, by Pythagoras (Yanney and Calderhead, 1896), is defined as EuclideanDistanceg,p,t =√
PriceDistance2g,p,t + PriceDistance2g,p,t.
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Discrete (DS) Continuous Slow (CS) Continuous Instant(CI)

Mean 0.252 0.128 0.161
Location Distance

SD 0.218 0.123 0.166

Mean 0.171 0.112 0.108
Price Distance

SD 0.180 0.116 0.130

Mean 0.343 0.190 0.214
Euclidean Distance

SD 0.235 0.147 0.191

Table 3: Comparison to Counterpart Statistics by Treatment. The table shows the mean and stan-
dard deviation of distances on specified dimension by treatment. Axes are scaled such that maximum
differentiation would give a distance of one.

Finally, using a linear regression with fixed effects for each period, we study the effect

of each treatment on the Euclidean distance between players, the distance between their

location, and the distance between prices. Table 4 presents the results, showing that all

of the distances are larger in both CS and DS than in the CI baseline. As expected, such

distances are bigger in the DS treatment than in the CS treatment.

Overall, Tables 2 and 4 are in line with the results of Friedman et al. (2015) and

Bigoni et al. (2015), who show that continuous- and long-time horizons foster collaboration

between experimental subjects. To have a better understanding of how subjects reach such

collusive states, in Section 4.2 we study the dynamic behavior of subjects under all three

treatments.

4.2 Non-Competitive Behavior

As detailed in Section 2, subjects have an ever-present incentive to undercut on either

dimension. However, given that the mean and median prices are between 0.5 and 0.6, it

is clear that subjects do not undercut each other. To study this collusive behavior more

in depth, we define non-competitive behavior as the fraction of time each pair of subjects

refrains from immediately undercutting each other. We first define such non-competitive

behavior as a situation where two players can settle into a position where the payoffs of

each subject are within 20% of each other.17

17Although this is a rather conservative and ad hoc threshold, our results are robust to a range of
changes to this threshold.
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loc dist price dist euc dist

(1) (2) (3) (4) (5) (6)

Continuous Slow (CS) –0.0339 –0.0338 0.00447 0.00446 –0.0242 –0.0242
(0.0214) (0.0214) (0.0159) (0.0158) (0.0291) (0.0290)

Discrete (DS) 0.0910∗∗∗ 0.0910∗∗∗ 0.0633∗∗∗ 0.0633∗∗∗ 0.129∗∗∗ 0.129∗∗∗

(0.0174) (0.0174) (0.0149) (0.0149) (0.0184) (0.0184)

Constant 0.162∗∗∗ 0.180∗∗∗ 0.108∗∗∗ 0.113∗∗∗ 0.214∗∗∗ 0.236∗∗∗

(0.0119) (0.0135) (0.0107) (0.0124) (0.0170) (0.0145)

N 772,584 772,584 772,584 772,584 772,584 772,584
Period FE No Yes No Yes No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Least Square with Fixed Effects. In the first two columns the dependent variable is the distance
between subjects in the location axis (loc dist) and the independent variables the dummies for the different
treatments (CS and DS). In columns (3) and (4), the dependent variables is the distance in the price
axis (price dist), while in and in columns (5) and (6) the dependent variable is the Euclidean distance
between both subjects. All standard errors are robust and clustered at the session level.

Discrete (DS) Continuous Slow (CS) Continuous Instant (CI)

Payoff20pct (difference of 20% or less between both payoffs)

Mean 0.167 0.218 0.253
SD 0.138 0.147 0.191

Steady Positive Payoffs (both subjects have positive payoffs)

Mean 0.599 0.539 0.608
SD 0.147 0.184 0.154

Table 5: Non-Competitive Behavior Rates by Treatment.
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Figure 5: Cumulative density functions. The figure shows the Cumulative density functions’ plotting
percentage of time in each non-competitive behavior across all periods and treatments.

Another way of defining non-competitive behavior is what we call Steady Positive

Payoffs. This concept abstracts away from a specific threshold, with ρg,p being any time

when both subjects have positive payoffs. The subject pair’s spell in Steady Positive

Payoffs is broken if one of the players undercuts her counterpart. The rates that come

from this definition are reported in Table 5, which shows that subjects carved out some

portion of the market well over 50% of the time. As expected, the CI treatment had the

least intense competition. However, CS treatments had lower non-competitive rates by

this measure and were even lower than the DS treatment.

In Table 6 we regress both measures of cooperation on dummies for the different treat-

ments and for each period.18 The results show that the differences between treatments

heavily depend on the definition we use for cooperation. When looking at the differences

186 has 431 and not 432 observations, because as reported in footnote 16, we lost the data for period
9 of Group 2 of session 4 of the CI sessions due to a computer glitch.
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(b) No Collusion

Figure 6: Two very different pairs. The left panel shows two subjects who successfully colluded for the
majority of a period in the Continuous Time (CI) treatment. The top panel is the subject pairs’ location
decisions over time, the middle panel is their price decisions over time, and the bottom panel is their flow
payoff. Note that player 4 was an “aggressive colluder,” as she willingly took losses at the beginning of
the period while waiting for her counterpart to conform. The right panel shows two subjects who were
unable to collude in a period in the CI treatment. The top panel is the subject pairs’ location decisions
over time, the middle panel is their price decisions over time, and the bottom panel is their flow payoff.
Note that player 4 is the same subject shown in Figure 6a but with a more aggressive counterpart.

in the time spent in positions where the payoffs are within 20% of each other, we see

negative values for the parameters of both treatments, but only the DS coefficient is sig-

nificant at a 10% level. However, if we define non-competitive behavior as the amount of

time in which both subjects of a pair get a positive payoff, then the results change, as

pairs in the CS treatment spend significantly less time in a collusive state than those in

the CI treatment, while we observe no significant differences for the DS treatment. Such

a flipping of differences in collusive behavior is clear in Figure 5, where we plot the cumu-

lative density functions of time spent in a non-competitive behavior (for each definition)

for each treatment.

Finally, as an illustration of how non-competitive states are reached, Figure 6a provides
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Payoff20pct Steady Positive Payoffs

(1) (2) (3) (4)

Continuous Slow (CS) –0.0349 –0.0350 –0.0689∗∗ –0.0689∗∗

(0.0473) (0.0479) (0.0252) (0.0255)

Discrete (DS) –0.0861∗ –0.0862∗ –0.00889 –0.00890
(0.0449) (0.0455) (0.0362) (0.0366)

Constant 0.253∗∗∗ 0.223∗∗∗ 0.608∗∗∗ 0.610∗∗∗

(0.0405) (0.0390) (0.0231) (0.0351)

N 431 431 431 431
Period FE No Yes No Yes

Standard errors in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: Least Square with Fixed Effects. In the first two columns the dependent variable is the fraction
of time in each round in which the payoffs of subjects are within 20% of each other (Payoff20pct) and
the independent variables the dummies for each treatment (CS and DS). In columns (3) and (4) the
dependent variable is the fraction of time in each round in which both subjects have positive payoffs
(Steady Positive Payoffs). All standard errors are robust and clustered at the session level.

circumstantial evidence of how players were able to coordinate. It shows a subject pair

in the CI treatment, with shaded regions indicating non-competitive behavior between

subjects. In the bottom panel, the thick lines are smoothed flow payoffs for each subject,

while the actual flow payoffs are shown in the background. At the very beginning of the

period, player 4 (the orange player) immediately adjusts her price to the maximum allowed

(normalized to one) and her location to the middle. Notice that doing this reduced her

payoff to be lower than her counterpart’s while she waited for her counterpart to fall in line

with her strategy. The subject pair colluded for almost the entire period, as indicated by

the blue bars in the payoff figure, resulting in higher than average payoffs for the period.

On the other hand, Figure 6b shows a typical case of players following each other in

the action space throughout the period. Player 4 is the same player who aggressively

pushed for a collusive state in Figure 6a but is now matched with a more competitive

player. Notice that she repeatedly attempts to increase prices, thus taking a momentary

loss. But player 4’s counterpart immediately undercuts her, forcing her to be drawn into

tight competition. At the end of the period, player 4’s payoffs are much lower than her

counterpart’s due to her attempts to ease competition. This kind of behavior was typical

in the game, as “aggressive colluders” could only coax anti-competitive behavior out of a

relatively low number of counterparts.
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5 Conclusion

Hotelling’s principle of minimum differentiation in one-dimensional spaces is both intuitive

and elegant. However, this principle has proven to be sensitive to modifications in the

model assumptions. Take, for example, changing the number of firms; while there is a

Nash equilibrium in pure strategies for the case of two firms, there is not one for three

firms but there is for four. Furthermore, as shown in D’Aspremont et al. (1979), Hotelling

was wrong in asserting that the principle of minimum differentiation applied to his model,

as, contrary to the well-known one-dimensional case, his original model has firms deciding

on a two-dimensional strategy space. So, not only is that ice cream cart deciding where

on the beach to set up shop, but it is also deciding at what price to sell the ice cream.

This second dimension is crucial, as it creates a tension between the forces that draw

firms to minimum differentiation (maximizing demand) and those that draw them to

maximal differentiation (avoiding price competition), resulting in the lack of a pure Nash

equilibrium.

The lack of a pure strategy Nash equilibrium in Hotelling’s original setup motivates

our work. To test whether Hotelling’s intuition was right, we ran a continuous-time

experiment where subjects could adjust their price and location. A laboratory setting

seems ideal for this setup since the attribute space across products is clearly defined and

pricing is not affected by second-order effects such as state regulation or unrelated brand

strategic positioning. Additionally, our experimental setup also allows us to introduce

different treatments that vary in how often subjects are allowed to adjust their price

and position, contributing to the literature that studies the strategic differences between

continuous- and discrete-time setups (e.g., Friedman and Oprea, 2012; Bigoni et al., 2015;

Benndorf et al., 2016).

Our principal findings can be summarized briefly. First, subjects tended to locate

close together in the middle of the action space, especially in continuous-time treatments.

In the CI and CS treatment, subjects were heavily concentrated in the center and only

10% of the action space away from their counterpart, supporting Hotelling
’
Äôs principle

of minimum differentiation. Second, non-competitive behavior was higher in continuous-

time treatments. Our results show that the free and instantaneous adjustment leads to

the least intense competition, and we give circumstantial evidence that subjects aggres-

sively push for collusive states at the expense of short-term payoffs. This is in line with
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previous laboratory experiments showing that the ability to respond quickly can increase

cooperation (e.g., Friedman and Oprea, 2012).

Additionally, we find an interesting effect by which the CS treatment results in lower

prices (i.e., more competitive environment) and overall lower payoffs for both subjects

than in the DS treatment, an environment in which collusion should be harder to sustain.

We believe that these effects come from the cost of retaliations across markets. In the CS

treatment, a price war could be amended (relatively) fast, so deviations were tempting;

however, in the DS treatment, any deviation from collusion could result in a very costly

war. Similar to the “mutually assured destruction” doctrine of the Cold War, the fear

of irreparable losses pushed subjects into relatively high rates of collusion in the CS

treatment.

To conclude, our results show that Hotelling was (intuitively) right, even if (formally)

wrong. In an oligopolistic setup where two firms can decide over two dimensions of their

product, the principle of minimal differentiation will largely hold with firms colluding

at high prices. However, how long this collusion can be sustained or (if ever) achieved

will depend dramatically on their environment. This means that many applications of

Hotelling’s model, from voting theory to gas station placement, should be viewed with

extreme caution in light of the instability — especially on the price dimension — shown

in our experiment.
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A Additional Tables and Figures

Table 7

Table 7: Subjects and Payouts by Treatment

Treatment Number of Subjects Average Payout

Continuous Instant 24 $18.39
Continuous Slow 24 $14.67

Discrete 24 $16.71
Total 72 $16.59

Notes: “Average Payout” includes the $5 show-up fee.
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Figure 7: Subject Final Payoff by Treatment.

B Movement of Subjects

We have documented where subjects tended to locate in both dimensions, but we also

wanted to characterize their movement when they did make adjustments. For this, we
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present in Figure 8 a form of an empirical vector field in which average subject movement

from a given position is shown. Here, vectors show the average direction that subjects

moved starting from that neighborhood. In the background, colors map to the percentage

of observations in that neighborhood for which players changed their action set. Darker

colors indicate that subjects tended to change their price/location decision in that area

more often, with the direction of the change following the overlaid vector, on average.

Subject adjustments vary greatly by treatment. In the Discrete treatment, subjects

tend to lower high prices, raise low prices, and tend to change their actions no matter where

they are placed making the behavior is somewhat erratic. Movement in the Continuous

Slow treatment is slightly clearer, with subjects tending to adjust toward the center. The

heatmap for Continuous Slow is a bit deceptive since action changes were rate limited by

the “slow” speed limit. The heatmap for this treatment shows changes in players target

location and prices, which were far less frequent than in the Discrete or Continuous Instant

treatments. But the clearest story emerges from the Continuous Instant treatment. Here,

the lower edges of the figure are darker as subjects made more frequent adjustments to

avoid being “boxed in” by their counterpart. Prices tend to adjust upward until about

0.6 — the median in this treatment — and downward above that. Central locations with

medium to high prices tended to be the most stable action sets.
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Figure 8: Vector Fields of Subject Position Adjustments by Treatment

(a) Discrete
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(b) Continuous Slow
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(c) Continuous Instant
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Notes: These figures show all players’ price and location decisions by treatment. Arrows
indicate the average direction of action set changes starting from the arrow’s neighbor-
hood. The heat maps run from cool to hot colors, with “hotter” colors indicating that
players were more likely to change their action set while in that neighborhood.
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