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Abstract

Smith, Suchanek, and Williams (1988) reported large bubbles and crashes in experimental
asset markets, a result that has been replicated many times. Here we test whether the
occurrence of bubbles depends on the experimental subjects’ cognitive sophistication. In
a two-part experiment, we first run a battery of tests to assess the subjects’ cognitive
sophistication and classify them into low or high levels. We then invite them separately
to two asset market experiments populated only by subjects with either low or high cog-
nitive sophistication. We observe classic bubble and crash patterns in markets populated
by subjects with low levels of cognitive sophistication. Yet, no bubbles or crashes are
observed with our sophisticated subjects, indicating that cognitive sophistication of the
experimental market participants has a strong impact on price efficiency.
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1 Introduction

In 1988, Vernon Smith, Gerry Suchanek and Arlington Williams (SSW) (Smith, Suchanek,

and Williams, 1988) published a seminal paper reporting the results of experiments on

the efficiency of asset markets. In their experiment, subjects are first endowed with assets

and experimental currency, and then are allowed to trade assets for currency in a multi-

period double auction market. At the end of each period, assets pay a stochastic dividend

whose distribution is common knowledge. At the end of the experiment, assets have no

buyback value and subjects are paid in cash according to the amount of experimental

currency they have accumulated. The asset’s fundamental value (FV) at any period can

be calculated as the number of periods left times the expected dividend per period. The

advantage of such experimental asset markets is that, contrary to real world financial

markets, the asset’s fundamental value is known to all participants of the market and also

to any observer attempting to assess the efficiency of these markets.

SSW observed large positive price deviations from the FV (also called bubbles) followed

by dramatic crashes towards the end of the experiment. To the surprise of most, these

bubbles turned out to be extremely resilient to replications under different treatments.1,2

Thus, the results became canonical to the extent that seldom a paper in the economic

experimental literature has spawned such a large industry of replications and follow-ups.

Stefan Palan in a recent survey (Palan, 2013) documents the main findings based on the

results from 41 published papers, 3 book chapters and 20 working papers. Palan concludes

with an optimistic appraisal: “Hundreds of SSW markets have been run, yielding valuable

insights into the behavior of economic actors and the factors governing bubbles”(p. 570).

1E.g.: Porter and Smith (1995), Caginalp, Porter, and Smith (1998), Caginalp, Porter, and Smith
(2000), Smith, Boening, and Wellford (2000), Dufwenberg, Lindqvist, and Moore (2005), Noussair and
Tucker (2006), Haruvy and Noussair (2006), Haruvy, Lahav, and Noussair (2007), Hussam, Porter, and
Smith (2008), Williams (2008).

2In a recent interview Vernon Smith reminisced about his earlier experiments and declared that the
design of his SSW experiment was transparent and, consequently, he could not understand why subjects
would not trade at the fundamental value: “We then turned to asset markets in the 1980s, and we started
with a very transparent market, an asset that could be re-traded but there was a yield, a dividend on
it that was common information. And we thought that would be very simple. It would be transparent
and people would trade at fundamental value. Well, wrong [...] These markets are very subject to bubbles
in the lab. And people get caught up in self-reinforcing expectations of rising prices. We don’t know
where that comes from. It’s incredible, but they do.” (Emphasis added) http://www.econtalk.org/

archives/2014/11/vernon_smith_on_2.html. November 17 2014.
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We are not so sure about that. We show below that the bubbles and crashes ob-

served in experimental asset markets disappear when the participants have a sufficient

level of cognitive sophistication. This would suggest that bubbles and crashes are not

intrinsic to SSW experimental asset markets, but contingent on the cognitive profile of

the experimental subjects.

The idea that the observed bubbles and crashes in the SSW-type experiments may be

due to some lack of understanding by the participants of the experiments is not entirely

new. Huber and Kirchler (2012) and Kirchler, Huber, and Stöckl (2012) have managed

to reduce bubbles in their experiments by either offering a more thorough rendering of

the market or describing the asset as a “stock from a depletable gold mine”. According

to them, an easier understanding of the market diminishes the bubbles. However, this in-

terpretation has been challenged. Baghestanian and Walker (2015) argue that particular

features of the experimental design by Kirchler, Huber, and Stöckl (2012) generate asset

prices equal to the fundamental value through increased focalism or anchoring, and not

because agents are less confused. More recently, while studying the effects of gender com-

position in SSW markets, Cueva and Rustichini (2015) report that subjects with higher

cognitive ability both earn higher profits and trade at prices closer to fundamental. Also

related is Hanaki, Akiyama, Funaki, and Ishikawa (2015) which shows that mispricing is

larger when subjects are aware of the heterogeneity of cognitive ability among partici-

pants.3

In this paper, we test whether the occurrence of bubbles in SSW-type experiments

depends on the subjects’ cognitive sophistication. Building on previous evidence relating

some degree of misunderstanding with the appearance of asset price bubbles, it is not

unreasonable to expect markets populated only by high sophistication subjects to gen-

erate fewer bubbles compared to markets populated by less sophisticated ones. To test

this hypothesis we design a two-part experiment: In the first part we invite subjects to

participate in a battery of tasks that allow us to approximate their “cognitive sophistica-

3In a paper on trust and reciprocity, McCabe and Smith (2000) present the result of one asset experi-
ment with 22 subjects whose decisions track the fundamental value of the asset from the very first period.
We value this as an inconsequential result since the participants were advanced graduate students (in the
third or fourth year of their Ph.D) from all over the world who had traveled to Arizona to participate
in a 5-days course on experimental economics with Vernon Smith. One should suspect that these grad
students interested in experimental economics had prepared well for their expensive trip and had read or
were already familiar with some of Prof. Smith’s most prominent papers, among them his famous 1988
paper about the asset market experiment.
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tion”. In part two, which is scheduled for a later date, we invite subjects who score low

(high) in our tasks of cognitive sophistication to participate in an asset market experi-

ment populated only by low (high) sophistication subjects. The results of the experiment

verify our expectations. Bubbles and crashes persist when the experimental subjects are

selected because of their lower cognitive scores. Interestingly, bubbles vanish completely

when we run the experiment with the more sophisticated subjects.

2 The Cognitive Tasks

In the first part of the experiment, subjects were asked to participate in a number of time-

constrained tasks to evaluate, among other items, their cognitive abilities. A total of 352

subjects participated in these tasks. All subjects were recruited through ORSEE (Greiner,

2015). We were careful not to invite subjects with previous experience in any of the

cognitive tests or in experimental asset markets. The invitation mails instructed subjects

to only sign up if they were available on a second date in which a new round of experiments

would take place. The second dates proposed in the email varied between one and five

weeks after the initial session. Except for the dates, no further information was given

about what was expected of them in the second part of the experiment. Subjects were

mostly undergraduate students with a variety of backgrounds, ranging from anthropology

to electrical engineering or even musicology (for a breakdown of the field of study see

Appendix E). Sessions were run at the Experimental Economics Laboratory of the Berlin

University of Technology. The experiment was programmed and conducted with the

software z-Tree (Fischbacher, 2007).

Subjects began this first part of the experiment with a “Cognitive Reflection Test”

(CRT)(Frederick, 2005), followed by playing a “Guessing Game” (Nagel, 1995) against

other subjects, then a “Guessing Game Against Oneself”, and finally 12 rounds of “Race

to 60”. There was no feedback to the participants during or in-between tasks.4 We selected

the first three tasks in order to test subjects on three dimensions that we deem relevant

for understanding SSW asset markets: cognitive reflection, strategic sophistication and

backward induction ability. We also elicited risk preferences by using a Holt and Laury

4Exceptionally, in the Race to 60 game there was some feedback as subjects learned at the end of each
round whether they have won that round.
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price list (Holt and Laury, 2002).5 However, this task was not included in our measure of

cognitive sophistication. In the following, we provide a brief description of the cognitive

tasks. For a more detailed description we refer the reader to the appendices.

The CRT is a three-item task of an algebraic nature, designed to measure the ability to

override an intuitive response that is incorrect and to engage in further reflection that leads

to the correct response. It has been shown that the test results are highly correlated with

IQ level, with compliance to expected utility theory, as well as with lower discount rates

(higher patience) for short horizons and lower levels of risk aversion (see e. g. Frederick

(2005) and Oechssler, Roider, and Schmitz (2009)). With respect to experimental asset

markets, Corgnet, Hernán-González, Kujal, and Porter (2015) and Noussair, Tucker, and

Xu (2014) find that CRT scores correlate positively with earnings.

In the Guessing Game (against others), participants were asked to guess a number

between 0 and 100 and were paid based on how close their choice was to 2/3 of the average

of all the guesses within their session. The guess gives an indication of the participant’s

capacity to perform iterative reasoning in a strategic environment. A simpler way (because

devoid of any strategic concerns) of testing the basic capacity for iterative reasoning is the

Guessing Game Against Oneself, where a participant has to pick two numbers between

0 and 100, and each number is paid independently, according to how close it is to 2/3

of the average of the two chosen numbers.6 Finally, participants played Race to 60, a

variant of the race game (Gneezy, Rustichini, and Vostroknutov (2010), Levitt, List, and

Sadoff (2011)), for 12 rounds against a computer. In this game, the participants and the

computer sequentially choose numbers between 1 and 10, which are added up. Whoever

is first to push the sum to or above 60 wins the game. The game is solvable by backward

induction, and the first mover can always win. Subjects always move first and therefore,

independently of the computer sophistication, they can always win the game by applying

backward induction.7

We finally computed an index of cognitive sophistication, Si, as a weighted average

5See Appendix B.4 for a description of the price list.

6To our knowledge, this is the first experiment in which a guessing game against oneself is played.
Petersen and Winn (2014) have a similar setup in which subjects compete against themselves in a mo-
nopolistic competition environment.

7Cueva and Rustichini (2015) independently used a similar game for their cognitive ability measure,
in their case it was a “Race to 15”.
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of the results obtained by each subject (i) in the tasks described above. This index has

a value between zero and one, and we use it to rank our subjects. A subject is classified

as having Low (High) cognitive sophistication if she is in the lower (upper) 30% of the

distribution of Si.
8,9 We counted 84 subjects with low sophistication and 83 with high

sophistication.10

3 The Experiment

All sessions of the asset market experiment followed the design of Haruvy, Lahav, and

Noussair (2007), except that our subjects participated in groups of seven (instead of

nine), we did not allow for practice runs, and had three (instead of four) repetitions of

the market. Subjects were endowed with a bundle composed of Talers (our experimental

currency) and a number of assets. Three subjects received 1 asset and 472 Taler, one

subject received 2 assets and 292 Taler, and three subjects received 3 assets and 112

Taler.11 Each session consisted of three repetitions (that are called rounds) and each

round lasted 15 periods. In each period, subjects were able to trade units of the asset

(called “shares” in the instructions) in a call market with other subjects.12,13 At the end

8See Appendix C for detailed results of each task, the construction of the Cognitive Sophistication
measure Si, as well as its distribution.

9The index aggregates the results of all cognitive tasks. One may wonder how differently subjects would
have been selected if one of the tests had not been used in constructing the index Si and, ultimately,
how different the results of our asset market experiment would have been. In Table 10 of Appendix C
we show that the percentage of overlapping subjects when one test is dropped from the index is high for
both High and Low sophistication groups, ranging from 72% to 86%.

10After the first batch of sessions, and in order to run three additional High sessions (see 4.2 below for
an explanation), we invited more subjects to be tested at a later time. We classified these subjects as
being of High Sophistication if they were above the boundaries of our first batch of tested subjects. In
total we ended up inviting 92 subjects with high scores. Participants who were not classified as having
either Low or High cognitive sophistication, i.e. the remaining 40%, were not invited to participate in
the asset market experiment.

11Subjects knew about their private endowment and were told that participants could have different
endowments.

12In order to trade, subjects post buy or sell orders, specifying the amount of shares they want to buy
(sell) and the maximal (minimal) price they want to pay (get). The price at which trades happen is then
set by the experimental software as the lowest price at which there is an equal number of shares offered
for purchase and sale.

13The SSW-type of asset market experiment has been run in the literature with different institutional
arrangements, basically either a continuous double auction or a call market. A call market, as in Haruvy,
Lahav, and Noussair (2007), allows only one price per period, as opposed to the possibility of multiple
prices in the continuous double auction, thus yielding a crisp description of the price dynamics. It also
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of every period, each share paid a stochastic dividend of either 0, 4, 14 or 30 Taler with

equal probability (expected dividend, 12 Taler). Shares had no buy back value at the end

of the 15 periods. Hence, the fundamental value of the asset in period t is 12(16 − t).

At the end of the experiment, subjects were paid in cash according to the sum of Talers

they have accumulated at the end of all three rounds. At every period and before any

trade took place, subjects were asked to predict the price of the asset for all upcoming

periods in the round. So, in period 1 subjects were asked to predict 15 prices, in period

2 they were asked to predict 14, and so on. Subjects were incentivized to give accurate

predictions: They were paid 5 extra Taler if a price prediction was within 10% of the

actual price, 2 Taler if a prediction was within 25%, 1 Taler if a prediction was within

50% of the price, and nothing otherwise.14

At the end of each period, subjects were told the price at which the asset was traded,

the dividend they collected, their profits, their share and cash holdings, and their accu-

mulated profits from their price predictions. Each session (which, as mentioned above, is

composed of three rounds) was programmed to last for two and a half hours, but a few

sessions went somewhat beyond.15

Before turning to the results, recall that our experiment had two different treatments:

• Low Sophistication treatment: all subjects that took part in this treatment were

from the lower 30% of the distribution of Si,

• High Sophistication treatment: all subjects that took part in this treatment were

from the upper 30% of the distribution of Si,

and that the main purpose of the experiment was to compare the asset price dynamics

in the two treatments.

helps participants to better understand the price prediction process, and mitigates the possibility of
subjects trying to manipulate prices to improve their prediction scores. Importantly, these advantages
come at no cost, as call markets and continuous double auction markets do not differ in their results. See
Palan (2013) (in particular his Observation 27: “A two-sided sealed-bid call auction does not significantly
attenuate the bubble”) for a detailed discussion on the matter and references to experiments comparing
both institutions.

14Notice that subjects were paid independently for all predictions they made of the price for a certain
period. For example, for the price in period 2 subjects were paid twice; once for the prediction they made
in period 1, and once again for the prediction they made in period 2.

15The instructions for the experiment can be found in Appendix D.
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Figure 1: Asset price dynamics in the first rounds of the two treatments: Six sessions in
the Low Sophistication treatment (on the left) and nine sessions in the High Sophistication
treatment (on the right). The thick diagonal line corresponds to the asset fundamental
value. Dashed lines represent sessions without common knowledge of high sophistication.

4 Results

4.1 First Round Low Sophistication

We ran six sessions of the experiment under the Low Sophistication treatment. The

results in all six sessions are the usual ones reported in the literature. The diagram

on the left of Figure 1 shows the price dynamics for the first round of each of the six

sessions. Prices begin below the fundamental value of the asset, climbing in the following

periods well above and beyond it, to finally crash near the last period. In summary,

when the experimental subjects belong to the lower end of the distribution of Cognitive

Sophistication, we observe the classic price dynamics of bubbles and crashes.16

16These results are in contrast with Hanaki, Akiyama, Funaki, and Ishikawa (2015) and may be, among
other reasons, due to their announcement to subjects that the market was populated only by low cognitive
ability subjects, or to their separation of subjects into high and low ability within the session and not
previously.
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4.2 First Round High Sophistication

Under the High Sophistication treatment we ran a total of nine sessions where all subjects

were chosen from the upper 30% of the distribution of Si. In six of these sessions subjects

were told that everyone in the session had “scored above average” in the cognitive tasks.

The results for these six High Sophistication sessions are striking by how markedly they

differ from the standard results of bubbles and crashes. In all six sessions, asset prices

track the fundamental value (almost) perfectly, as shown in the diagram on the right

of Figure 1 with the labels Sessions 1 to 6. While in both treatments, Low and High,

prices start below the fundamental value (as one would expect if subjects are risk averse

and begin the experiment by testing the market), in the High Sophistication treatment

prices reach the fundamental value sooner and hover close to it for the remaining periods.

Because we were in doubt whether the disappearance of the bubbles was due to the high

cognitive scores of the experimental subjects or to their shared knowledge of it, we ran

three additional sessions. These sessions were populated by High Sophistication subjects

who were not told that they had been selected because of their high scores (dashed lines

in Figure 1).17 Again, we observe that prices approach the fundamental value of the asset

from below and stay close to it for the remaining periods. In essence, as before, bubbles

and crashes vanish.18 Since we do not observe any differences whether subjects share

or not a knowledge for their common sophistication, we pool the nine sessions together

on the right panel of Figure 1, to facilitate the comparison with the Low Sophistication

treatment on the left of it.
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Figure 2: Asset price dynamics in all rounds

4.3 Second and Third Round Results

In Figure 2 we present the evolution of prices across all treatments and rounds, with the

three rounds of the High (Low) Sophistication treatment in the upper (lower) row. As

usually found in the literature, prices appear to converge (slowly) to the fundamental

value in the Low treatment, as some learning takes place. In the High Sophistication

17One cannot rule out completely that subjects could independently come to the conclusion that they,
and all other invited subjects, were of high cognitive ability, that all of them shared the same beliefs that
everyone else was of high ability, that they believed that all other subjects believed what they believed,
and so on ad infinitum. Yet, given the temporal spacing between the task sessions and the asset market
sessions, the participants’ different fields of study that did not facilitate communication among them,
and the fact that the tasks session involved more than cognitive tests, it seems highly unlikely that a
potential “common-knowledge-of-sorts” would be driving our treatment effect.

18Cheung, Hedegaard, and Palan (2014) show that public knowledge of training on the experimental
environment reduces bubbles. They also show that even well-trained subjects can create mispricing when
they think that others in the market are non-trained. In our sessions without common knowledge, subjects
were not only not told the cognitive sophistication of the subjects they traded with but, as explained in
the previous footnote, had no reasons to believe that their cognitive sophistication was the reason for
their participation in the experiment.
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Measure Formula

RAD 1
N

∑N
t=1 |Pt − FVt|/FV

RD 1
N

∑N
t=1(Pt − FVt)/FV

PD 1
N+

∑N
t=1 max{0, (Pt − FVt)/FV }

DUR max {m : Pt − FVt < Pt+1 − FVt+1 < ... < Pt+m − FVt+m}

AMP max
{

Pt−FVt

FV1
: t = 1, ..., 15

}
−min

{
Pt−FVt

FV1
: t = 1, ..., 15

}
Table 1: Definition of bubble measures

treatment we observe basically the same price dynamic as in the first round, but in two

of the nine sessions, prices tend to rise somewhat towards the end of the third round.

We do not attribute any significance to this pattern, which might well be due to simple

boredom from the previous uneventful rounds.

4.4 Measurement of Mispricing

In order to formally compare the asset price dynamics in our two treatments, we make use

of standard bubble measures: relative absolute deviation (RAD), relative deviation (RD),

duration (DUR), price amplitude (AMP) (see e.g. Stöckl, Huber, and Kirchler (2010) and

Porter and Smith (1995)), and positive deviation (PD) (as in Eckel and Füllbrunn, 2015).

The measures are described in Table 1 where Pt and FVt denote the observed price and

the fundamental value in period t respectively, and FV is the average fundamental value

across all periods. The number of total periods is N = 15, and N+ denotes the number

of rounds in which the deviations from the fundamental have a positive sign.

To compare bubble measures in all three rounds, we provide summary statistics in Ta-

ble 2. Consistent with Figure 2, in the Low Sophistication treatment all bubble measures

appear to decrease over rounds, as is usually observed in the literature. For the High So-

phistication treatments there is a slight increase in deviations from the fundamental value

in the last round. This increase is caused by two markets in which prices are somewhat

above the fundamental value towards the end of the third round.

In addition to the measures above, we also analyze the number of transactions, which

turns out not to be significantly different across treatments and relatively stable over

periods and rounds. The average number of transactions is around 2 transactions per
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Measure Treatment Round 1 Round 2 Round 3 Total

Mean RAD high 0.077 0.074 0.101 0.084
Mean RAD low 0.708 0.308 0.277 0.431
P -value 0.002 0 0.018 < 0.001

Mean RD high -0.004 0.065 0.095 0.052
Mean RD low 0.105 0.092 0.031 0.148
P -value 0.955 0.272 0.388 0.529

Mean PD high 0.036 0.069 0.098 0.068
Mean PD low 0.406 0.2 0.154 0.253
P -value 0 0.066 0.955 0.008

mean DUR high 3.556 3.889 3
mean DUR low 8 5.333 4.833
P -value 0.003 0.08 0.112

Mean AMP high 0.299 0.17 0.162
Mean AMP low 1.433 1.327 1.199
P -value 0.002 < 0.001 < 0.001

Notes: P -values are calculated using the Mann-Whitney U-test. The null
hypothesis is that the distributions of the measures in the High and Low
treatments are identical.

Table 2: Bubble measures.

period in the first two rounds, declining to about 1 transaction per period in the third

round.19

4.5 Predictions

As mentioned, in every period subjects were asked to predict asset prices for the actual and

the remaining periods of the round before trading. These predictions were incentivized

to nudge subjects to give their best guess of present and future prices. Figure 3 shows

the average predictions in the three rounds for treatments Low Sophistication (top) and

High Sophistication (bottom) respectively. The x -axis indicates the period in which the

prediction was elicited (t), while the y-axis indicates the period for which a prediction

was made. The coloring of the bars indicates their height, with lighter colors representing

19see Figure 12 in Appendix E for more information on transactions.
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Figure 3: Average price predictions for Low (above) and High Sophistication treatments
(below) in the three rounds. “Period of Elicitation” indicates the period in which the price
predictions are made. “Period Forecasted” indicates the periods for which the predictions
are made. The colors of the bars code for the average prices predicted, from beige for
high prices to dark blue for low ones.

higher price predictions and darker colors representing lower price predictions.20

In the first round of the Low Treatment, we observe that the color pattern is stable in

the direction perpendicular to the x -axis as subjects, in each period of elicitation, do not

anticipate the price changes across the remaining periods. Interestingly, while subjects

do update their price expectations between periods, they seem to do so in a rather naive

way: As subjects observe increasing prices in the early periods, their predictions of future

prices increase too. However, they falsely predict that prices in the remaining periods

will stay constant at or near the prices they are currently observing. Nevertheless, after

subjects observe the price bubble in the first round, the pattern of the price predictions

changes in the remaining two rounds. In Round 2, price expectations follow a reverse

U-shape along the y-axis, as subjects predict that prices will bubble in this round. In

Round 3, price predictions converge somewhat to the fundamental value.

In contrast, in the first round of the High Sophistication treatment, bar colors remain

20While we included the numerical values on the z -axis, it is easier to read the levels of the price
predictions from their color coding, as the perspective distorts the vertical view.
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unaltered along the x -axis, indicating that subjects on average predicted the same price

for each period independently of the period in which prices were elicited. In other words,

they anticipated from the beginning of the experiment what was bound to happen and,

therefore, did not have to change their predictions as the experiment proceeded. In

rounds 2 and 3, average price expectations appear virtually indistinguishable from the

fundamental value.

To formally compare prediction errors across treatments, we compute for each subject

i and round r the “average absolute error” (AAEi,r) by summing up absolute deviations

of all price predictions Bt+k
i,r,t that subject i made in each period t for period t+k in round

r, from the actual observed price Pr,t+k, normalized by the number of predictions made

(Np = 120) and the periodic fundamental value (FVt+k).

AAEi,r =
1

Np

15∑
t=1

16−t∑
k=0

|Bt+k
i,r,t − Pr,t+k|
FVt+k

Figure 4 plots for each round every subject’s average absolute error (AAEi) against the

index of cognitive sophistication (Si). The difference between the High and Low So-

phistication treatments is striking:21 The average absolute error is significantly higher in

the Low Sophistication treatment than in the High Sophistication treatment in all three

rounds (all p-values from Mann-Whitney U Tests are smaller than 0.001), suggesting a

negative correlation between prediction error and cognitive sophistication.22 While the

average absolute error decreases significantly in both treatments between Round 1 and

Round 3 (p-values in both treatments are below 0.001), even in Round 3, the errors in

the Low Sophistication treatment remain on average above the errors in Round 1 of the

High Sophistication treatment.

In Table 3 we regress AAE on the three components of our measure for cognitive

sophistication: cognitive reflection (CRT ), strategic sophistication (GG) and backward

induction ability (R60). We also control for gender (male=1, female=0), risk aversion,

21We pool observations from the sessions with and without common knowledge of high cognitive sophis-
tication in this analysis, as differences between these two treatments are not significant (Mann-Whitney
p-values are 0.815, 0.589, and 0.255 for rounds 1, 2, and 3 respectively).

22We also test whether there is a within treatment correlation between cognitive sophistication and
average accumulated error. We find no significant correlations in the Low Sophistication treatments. In
two rounds of the High Sophistication treatment we find a significant correlation (Spearman ρ = −0.41
(p-value=0.001) for the first round, and Spearman ρ = −0.28 (p-value=0.024) for the second).
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Figure 4: Average Absolute Error in rounds 1 to 3 on the vertical axis with the correspond-
ing Index of Cognitive Sophistication, Si, on the horizontal axis. Black dots correspond
to Low Sophistication sessions while blue dots refer to High Sophistication sessions.

and round effects. The regression is OLS with robust standard errors clustered at the

session level.

In the first column, where we aggregate across all subjects, all cognitive measures have

a negative and significant coefficient, and male subjects have a significantly higher AAE

than female traders. Additionally, it seems that more risk averse subjects make better

predictions. The second and third columns use only observations from the Low and High

Sophistication sessions respectively. Here, we find that only strategic abilities (GG) are

significantly correlated with predictive success in the High Sophistication treatment.

Additionally, we confirm that there are no differences between treatments with and

without common knowledge of sophistication for High Sophistication treatments as the

dummy Info is not significant. Finally, as expected, AAE is reduced with subject’s expe-

rience (round 2 and 3).
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Average Absolute Error

Aggregate Low High

CRT -0.193∗∗ -0.586 -0.102
(0.0878) (0.305) (0.0810)

GG -0.686∗∗ -1.286 -0.331∗∗

(0.251) (0.870) (0.124)

R60 -0.128∗∗∗ -0.245 -0.0449
(0.0395) (0.190) (0.0251)

Gender (male) 0.229∗∗ 0.558∗∗∗ -0.0606
(0.0942) (0.192) (0.0644)

Risk Aversion -0.0980∗∗∗ -0.141∗∗∗ -0.0233
(0.0195) (0.0357) (0.0159)

Round 2 -0.303∗∗ -0.508∗ -0.167∗

(0.103) (0.213) (0.0844)

Round 3 -0.436∗∗∗ -0.783∗∗ -0.204∗

(0.132) (0.245) (0.0963)

Info -0.0306
(0.102)

Constant 2.615∗∗∗ 3.310∗∗∗ 1.354∗∗∗

(0.343) (0.782) (0.320)

N 315 126 189
adj. R2 0.448 0.215 0.067

Notes: Robust standard errors, clustered at the session level, in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Regression of average absolute error on subjects’ individual
characteristics.

4.5.1 How does market data influence predictions?

In Haruvy, Lahav, and Noussair (2007) the authors compare two different alternative

models of belief formation. They observe that an adaptive model in which subjects use

the information of past and current prices to form beliefs about future prices outperforms

a model in which subjects use the fundamental value of the asset to form their price

beliefs. In this section we test these models using the data of our two treatments.
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i) Adaptive model: The idea behind this model is that subjects use the information

of past rounds (roundtrend), and the recent period price trends (periodtrends) to make

predictions:

Bt+k
i,r,t = Ci + α ∗ roundtrend+ β ∗ periodtrend, (1)

where Bt+k
i,r,t is the prediction that subject i made in round r and period t for the price

in period t + k of the same round. Ci is an individual-specific intercept, roundtrend is

the extrapolation of the percentage change between periods t + k − 1 and t + k in the

past round r− 1 to this round r, and periodtrend is the trend of prices and expectations

between periods t+ k − 2 and t+ k − 1 of the current round r at prediction period t.

roundtrend(r, t, k ≥ 1) = Bt+k−1
i,r,t +Bt+k−1

i,r,t

Pr−1,t+k − Pr−1,t+k−1

Pr−1,t+k−1
,

where Pr−1,t+k is the price in period t+ k of round r− 1. For k=0, we replace Bt+k−1
i,r,t

with Pr,t−1.

periodtrend(r, t, k > 1) = Bt+k−1
i,r,t +Bt+k−1

i,r,t

Bt+k−1
i,r,t −Bt+k−2

i,r,t

Bt+k−2
i,r,t

.

When k = 0, then Bt+k−1
i,r,t is replaced by Pr,t−1 and Bt+k−2

i,r,t with Pr,t−2. In the case of

k = 1 we replace Bt+k−2
i,r,t by Pr,t−1. For further details, see Haruvy, Lahav, and Noussair

(2007).

The estimation results for this model are shown in Table 4.23 The model seems to

fit the data well as the adjusted R2 for both treatments are high even in the first round.

For Low Sophistication subjects, periodtrend is relatively close to zero in the first round.

This is what we would expect given that, as we saw in Figure 3, in each period of the first

round Low Sophistication subjects predict prices to remain constant over the remaining

periods. While periodtrend remains relatively low for rounds two and three, roundtrend

is comparatively large. This implies that behavior in past rounds has more influence on

price expectations than current round behavior.

23To account for correlation of errors within sessions and over time, we estimate the model using
robust standard errors, clustered at the session level. To facilitate comparability with the results of
Haruvy, Lahav, and Noussair (2007), we report the regressions shown in Tables 4–6 without clustering
in Appendix E.
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Low High

Roundtrend Periodtrend Roundtrend Periodtrend R2 Low/High

Round 1 .103 .875∗∗∗ .659/.961
(.081) (.061)

Round 2 .536∗∗∗ .061 .905∗∗∗ .075∗ .885/.992
(.087) (.067) (.041) (.040)

Round 3 .739∗∗∗ −.002 .897∗∗∗ .101 .899/.997
(.075) (.026) (.067) (.069)

Notes: Robust standard errors, clustered at the session level, in parentheses. The null hypothesis

is that the coefficient is equal to zero (* (p < 0.10), ** (p < 0.05), *** (p < 0.01)).

Table 4: Estimated coefficients for Roundtrend and Periodtrend in the adaptive model.

In the High Sophistication treatment, periodtrend is much higher compared to the

Low Sophistication treatment in the first round. In rounds two and three, the relative

comparison of roundtrend and periodtrend appears similar to the Low Sophistication

treatment. However, we do not want to overinterpret the point estimates of roundtrend

and periodtrend in the High Sophistication treatment, as the subjects behave almost

identically across all three rounds, resulting in multicollinearity between both regressors

(see Figure 3).24

ii) Fundamental value model: In the fundamental value model, price predictions

follow the fundamental value of the asset:

Bt+k
i,r,t = Ci + γFt+k (2)

where Ft+k is the fundamental value in period t+k. The results are presented in Table 5

showing that, judging by comparable levels of R2, an adaptive model based on past market

prices, and a model based on the fundamental value of the asset perform about equally

well for High Sophistication subjects. This is because in High Sophistication sessions, the

price predictions in all rounds track almost perfectly the fundamental value of the asset.

For the Low Sophistication sessions on the other hand, the adaptive model provides a

better fit than the fundamental value belief model. Yet, it is interesting to observe that

24The variance inflation factor of periodtrend (roundtrend) for High Sophistication sessions in Round
2 are of 20.75 (19.74), and 77.77 (75.45) in Round 3. For the Low Sophistication sessions these are 2.70
(5.04) in Round 2, and 3.77 (4.90) in Round 3.
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Fundamental value (γ)
Low

Fundamental value (γ)
High

R2 Low/High

Round 1 −.090??? .778??? .617/.842
(.088) (.033)

Round 2 .628? .984 .790/.978
(.154) (.016)

Round 3 .793 .956 .844/.988
(.141) (.028)

Notes: Robust standard errors, clustered at the session level, in parentheses. The null hypothesis

is that the coefficient is equal to one (? (p < 0.10), ?? (p < 0.05), ??? (p < 0.01)).

Table 5: Estimated coefficients in the fundamental value model.

even in the Low Sophistication sessions, the fundamental value model catches up quickly

with the adaptive expectation model (see the adjusted R2 for both in Round 3).

4.5.2 How biased are the predictions of prices?

One interesting question studied in Haruvy, Lahav, and Noussair (2007) is whether sub-

jects make biased predictions about future market behavior, i.e. whether subjects consis-

tently over or under-predict prices. To answer this question they estimate the following

regression model:

Pt − Pt−1 = α + β(Bt
t − Pt−1)

The left hand side of this equation is the change in prices between two consecutive

periods. The right hand side is a linear function of the average belief in period t of the

price the same period (Bt
t) minus the last period’s price (Pt−1).

25

This model can be interpreted as follows: if α = 0 and β = 1 then the prediction of

short term price changes is unbiased. We report the results of the estimation, separated

by treatments and rounds, in Table 6.

In the Low Sophistication treatment, β is (marginally) significantly smaller than one

in round one (round two and three), and α is significantly smaller than zero in the last

25The average belief here refers to the average belief in each period aggregated on the market level.
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Figure 5: Actual price changes vs. predicted price changes

two rounds. This implies that, in this treatment, subjects systematically overestimate

short term changes in prices.26

A literal interpretation of the estimation results in the High Sophistication treatment

shows that subjects underestimate price changes in the first round, and then overestimate

price changes in the remaining two rounds. However, these estimations should be inter-

preted with caution: subjects in this treatment predict changes in prices so well, that the

estimation results are not very informative. This is illustrated in Figure 5, which pro-

vides a scatter plot of estimated changes vs. real changes in prices, separated by rounds

and treatments. In the High Sophistication treatment, observations are closely grouped

around (-12,-12), indicating that the average forecasted change is very close to the actual

change in prices, which follows the change in fundamental values between periods (-12).

Fitting a linear model with a constant in this case may lead to arbitrary results, as all

26Interestingly, Haruvy, Lahav, and Noussair (2007) find an opposite effect, i.e. subjects systematically
underestimate short term price changes
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Low High

α β α β R2 Low/High

Round 1 1.07 .620??? 8.82∗∗∗ 1.44? .178/.369
(3.66) (.08) (2.49) (.224)

Round 2 −8.92∗∗∗ .365? −5.25∗∗ .445??? .067/.209
(2.00) (.265) (1.82) (.143)

Round 3 −10.3∗∗∗ .356? -2.53 .694?? .094/.179
(1.32) (.256) (1.48) (.108)

Notes: Robust standard errors, clustered at the session level, in parentheses. The null hypothesis is

that the coefficient for α is zero (* (p < 0.10), ** (p < 0.05), *** (p < 0.01)). For β the null hypothesis

is that the coefficient is equal to one (? (p < 0.10), ?? (p < 0.05), ??? (p < 0.01)).

Table 6: Relationship between actual and predicted price.

depends crucially on a few outliers (such as the first period of the first round). Therefore,

for the High Sophistication levels we suspect that a better understanding is provided by

Figure 3 and 5 which shows how closely predictions track prices.

4.6 Profits From Trading

In this section we analyze how subjects’ profits depend on their cognitive profile. Recall

that profits in this experiment come from two sources. First, subjects are paid according

to their cash holdings at the end of the last period of each round. Second, subjects receive

profits based on how well they predict prices. Since we have already analyzed the impact

of cognitive ability on prediction quality in Section 4.5, we will focus here on profits that

stem from trading.

These are profits made purely from buying stock at a low price and reselling at a

higher price. To calculate these profits, we take individual cash holdings at the end of

each round and subtract any dividend payments and initial cash endowments. Note that

these profits always add up to zero when aggregated over each round: one subject’s gains

from trading are always another subject’s losses.

In Table 7 we regress profits from trading on the three components of our measure

for cognitive sophistication (CRT , GG, R60). We also control for risk aversion and

gender (male=1, female=0). The three columns of the table represent, respectively, the

regression coefficients on the pooled data from both treatments, on the data from the Low

Sophistication treatment and on the data from the High Sophistication treatment. In the
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Trading Profit

Aggregate Low High

CRT 29.53 81.64 67.55
(34.87) (45.61) (107.5)

GG -108.5 112.3 -206.4
(124.5) (179.8) (213.4)

R60 -0.506 -37.25 13.76
(23.94) (73.30) (30.72)

Gender -71.50 -35.18 -116.1
(60.91) (67.21) (111.4)

Risk Aversion 5.035 9.052 6.828
(13.90) (14.21) (25.19)

Info 1.076
(27.98)

Cons 34.20 -59.70 -37.45
(97.02) (124.9) (382.6)

N 315 126 189
adj. R2 0.000 -0.028 0.006

Notes: Robust standard errors, clustered at the session level, in parentheses.
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Regression of trading profits on subject’s individual char-
acteristics.

regression using the data from the High Sophistication treatment, we additionally include

a dummy for the treatment with common knowledge of high sophistication (Info).27

The results show that none of the components of our measure of cognitive sophisti-

cation has a significant impact on trading profits.28 This finding is not surprising as the

regression only provides information of correlations within treatment, where the variation

in cognitive ability is low.

The coefficient on our measure of risk aversion is also not significantly different from

zero, suggesting that risk aversion does not affect trading profits.

27Note that we do not include round dummies, since trading is a zero sum game, and thus profits from
trading are always zero aggregated over each market, regardless of the round.

28The components are also not jointly significant (F-test, p-value = 0.28).
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We are also interested in comparing the spread of profits within rounds across treat-

ments, as one could suspect that rounds with larger bubbles create more unequal outcomes

in terms of profits from trading. Using Levene’s test, however, we find no significant dif-

ferences in variances of profits across treatments (p = 0.11)

In conclusion, we do not find any effect of cognitive ability on trading profits. While

this might seem at odds with previous results (see Corgnet, Hernán-González, Kujal, and

Porter (2015) or Noussair, Tucker, and Xu (2014)), it should be interpreted as a direct

outcome of our particular experimental design, where high (low) ability subjects, who are

matched with their equals, cannot systematically exploit (be exploited by) other similarly

sophisticated subjects.

4.7 Risk Aversion

Whether risk aversion is correlated with cognitive ability is a question that has received

some attention in the literature. Dohmen, Falk, Huffman, and Sunde (2010) find that

risk aversion is correlated negatively with cognitive ability, i.e. cognitively more able

subjects tend to be less risk averse. Andersson, Tyran, Wengström, and Holm (2015)

however, argue that this result is spurious, an artifact caused by the method used to elicit

risk aversion. With respect to experimental asset markets, Eckel and Füllbrunn (2015)

attribute some of the differences they find in bubble formation between their male and

female subjects to differences in risk aversion.

As mentioned, in the first part of our experiment, we asked subjects to complete a Holt

and Laury price list (Holt and Laury, 2002) before playing the cognitive tasks described

in Section 2. We find no significant differences in risk aversion between our High and

Low sophistication groups (Mann-Whitney U-test, p-value = 0.88). Moreover, none of

the individual components of our measure of cognitive sophistication are significantly

correlated with our measure of risk aversion. These findings imply that, at least for our

sample and the measures used, risk aversion and cognitive sophistication are unrelated.

To analyze if risk aversion can explain price dynamics, we also check if the average

session risk aversion is correlated with our bubble measures as well as average round price.

Pooling observations from all rounds and treatments, we find a significantly negative

correlation between risk aversion and the bubble measures RD (Spearman ρ = −0.34,

p = 0.02) and a marginally negative correlation for POS (Spearman ρ = −0.28, p = 0.06).

23



These findings imply that even though we do not find any correlation between cognitive

ability and risk aversion, some part of the price dynamics may be explained by differences

in risk aversion: markets that have higher risk aversion on average appear to be less prone

to mispricing.

5 Conclusion

Our goal in this paper is to test the hypothesis that bubbles and crashes observed in

SSW-type experimental asset markets are driven by the subjects’ lack of cognitive so-

phistication. We use a battery of cognitive tests to separate our pool of subjects into

two groups (High and Low Sophistication) and run separate asset market experiments

with each group. The results are striking. While the asset markets populated by Low

Sophistication subjects show the usual pattern of bubbles and crashes, these vanish when

the experimental subjects belong to the High Sophistication group. These results support

the hypothesis that the bubbles and crashes observed in SSW-type experimental asset

markets are not intrinsic to such markets, but contingent on the cognitive sophistication

of the experimental subjects.29 Now, if bubbles and crashes are not intrinsic to experi-

mental asset markets, then any tendency to infer, from the often-times observed bubbles

and crashes in these markets, that real markets must also be prone to bubbling becomes

questionable.30

Further explorations of our experimental data give support to the hypothesis that

cognitively sophisticated players make better price predictions. Indeed, predictions are

better for subjects who perform well in the cognitive tasks. Yet, the hypothesis that

higher cognitive sophistication is correlated with higher profits from trading is rejected

in our experiments. This is not entirely surprising, however, as our players only trade

29While it is the case that some experimental asset markets have shown a high degree of price efficiency
without cognitively sophisticated subjects (e.g. Smith, Boening, and Wellford (2000), Noussair, Robin,
and Ruffieux (2001), Kirchler, Huber, and Stöckl (2012), Stöckl, Huber, and Kirchler (2014), Kirchler,
Bonn, Huber, and Razen (2015)), the design of these particular markets tend to be even simpler than in
SSW, having constant FVs and, in some cases, no dividends.

30For a comment that relies on the external validity of experimental asset markets see, e.g., Knott 2012,
p.86, who referencing SSW experiments writes: “In simulated economic markets played with student
participants, the results show that price bubbles occur naturally [italics added]. [...] These analyses of
incentives and institutional relationships in the economy in the past decade help to explain in part the
private market failure that led economic actors to engage in increasingly risky behavior. Experimental
economics also shows why the dramatic economic changes and financial innovations during this period
may have added to risk taking and the failure in the market.”
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with subjects within the same group of cognitive sophistication. Thus we can only test

whether the relatively small differences in cognitive sophistication within group matter.

We also find that while our measure of risk aversion is not correlated with the index of

cognitive sophistication, it does seem to explain part of the mispricing in our markets:

markets with higher average risk aversion appear to bubble less.

Additional treatments could be conducted with mixed-sophistication sessions in order

to explore, for instance, whether there is learning on the part of the less sophisticated

subjects from the behavior of more sophisticated ones. But this and other explorations

belong to future papers. In the present one we remain focused on the result that high

cognitive sophistication eliminates the mispricing in SSW-type asset markets. Whether

the effect of the subjects’ cognitive sophistication has an impact in other equally simple

or, especially, in more complex experimental markets becomes now a plausible hypothesis.
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Appendix
For Online Publication

A Instructions

The instructions below are translated from the original German instructions. The in-

structions were read aloud to the participants.

Overview This is the first part of a two-part experiment. The second part will take

place this coming Friday, November 7th, 2014. Depending on your decisions in this

experiment you may be invited to the second part of the experiment. However, not all

participants of this experiment will be invited to the second part. The experiment today

is made up of several games and questionnaires. After each game/questionnaire, you will

receive new instructions for the next game/questionnaire. In total, the experiment will

take approx. one hour. For your participation you will receive a minimum payment of 5

Euro. Depending on your actions during the experiment you can earn more than that.

After all questionnaires and games are done, your payoff will be shown on your monitor.

You will then be handed a receipt in which you enter your earned payoff as well as your

name and address. Please go then to the adjoining room to receive your payment.

Quiz In this quiz, we ask you to answer three questions of differing difficulty. Please try

to answer as many of them as possible. You have 5 minutes of time, and you will receive

one Euro for each question answered correctly.

1. A bat and a ball cost $1.10. The bat costs $1.00 more than the ball. How much

does the ball cost?

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100

machines to make 100 widgets?

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it

takes 48 days for the patch to cover the entire lake, how long would it take for the

patch to cover half of the lake?
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Questionnaire On the screen before you, you see 10 decision situations. In each of

these situations, you have the choice between two options, A or B. Both options contain a

lottery with two possible amounts of money you can win, and their respective probabilities.

Example: In the first decision situation (the first row on your screen), Option A pays

2e (with a probability of 10%) or 1.60e (with a probability of 90%). Option B on the

other hand pays 3.95e (with a probability of 10%) or 0.10e (with a probability of 90%).

The following 9 decision situations are very similar, and only the probabilities with

which you can win the prizes change. Please choose between Option A and B by moving

the scroll bar either to the left or to the right. Also note that you are restricted in the

following way; after the first line in which you choose Option B over A, you have to choose

Option B in all following lines. Your earnings from this lottery will be paid in cash after

the end of the experiment. Which of the 10 decision situations will be paid is determined

randomly by the computer. Depending on whether you chose Option A or B in this

randomly chosen situation, either Lottery A or B will be played. Then a random number

generator determines the amount that you win (of course with the stated probabilities).

Game 1 In this game you choose a number between 0 and 100 (both included). The

other participants also choose a number between 0 and 100. Your payoff depends on how

far away your number is from 2/3 of the average of all chosen numbers (yours included).

The closer your number to 2/3 of the average, the higher your payoff. Your payoff is

calculated as follows:

Payoff (in Euro) = 1− 0.05 ∗ |your number− 2/3 ∗ average|

In words: your payoff (in Euro) is calculated as 1 minus 0.05 times the absolute difference

between your number and two thirds of the average of all chosen numbers. Since the

absolute difference (as indicated by the absolute value bars “|”) is used, it does not

matter whether your number is above or below two thirds of the average. Only the

absolute distance is used to calculate your payoff. The smaller the difference, i.e. the

distance of your number to two thirds of the average of the chosen numbers, the higher

your payoff. Please note that your payoff cannot be negative. If your payoff, as calculated
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with the above formula, turns out to be negative, then you will receive 0 Euro. Since the

payoff for the other participants is calculated in the same way, they too have an incentive

to choose a number that is as close as possible to 2/3 of the average. You are playing this

game with all other participants that are presently in the room. You have 90 seconds to

enter your number.

Game 2 This game is very similar to the game played before. Again, it is your goal to

choose numbers that are as close as possible to 2/3 of the average. This time, however,

you will be playing against yourself. You are playing the same game as before, only this

time the only player with whom you play, is yourself. This time you will be asked to enter

two numbers between 0 and 100 (both included), and your payoff will depend on how

close your numbers are to two thirds of the average of the two numbers that you chose.

Since you play against yourself, the average number equals your first chosen number plus

your second chosen number, divided by two. This time you will be paid twice, once for

each number you choose. The payoff for your first chosen number is calculated as:

Payoff (in Euro) = 0.5− 0.05|Number1− 2/3 ∗ [((Number1 + Number2))/2]|,

where Number1 is the first chosen number, and Number2 is the second chosen number.

Your payoff for your second chosen number is calculated as:

Payoff (in Euro) = 0.5− 0.05|Number2− 2/3 ∗ [((Number1 + Number2))/2]|,

You have 90 seconds to enter both numbers.

Game 3 (Race to 60) In this game, you play several repetitions of the game “Race

to 60”. Your goal is to win this game as often as possible against the computer. In this

game you and the computer alternately choose numbers between 1 and 10. The numbers

are added up, and whoever chooses the number that pushes the sum of numbers to or

above 60 wins the game. In detail, the game works as follows: You start the game against

the computer, by choosing a number between 1 and 10 (both included). Then the game

follows these steps: The computer enters a number between 1 and 10. This number is

added to your number. The sum of all chosen numbers so far is shown on the screen. If
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the sum is smaller than 60, you again enter a number between 1 and 10, which in turn

will be added to all numbers chosen so far by you and the computer. This sequence is

repeated until the sum of all numbers is above or equal to 60. Whoever (i.e. you or the

computer) chooses the number that adds up to a sum equal or above 60 wins the game.

You will be playing this game 12 times against the computer. For each of these games

you have 90 seconds of time. For each game won, you receive 0,5 Euro.
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B Description of Cognitive Tasks & Risk Preference Elicitation

B.1 CRT

The CRT tests the ability to overrule an initial intuitive response that is incorrect, and to

engage in further reflection to find the correct answer. The test consists of three algebraic

questions, which are:

1. A bat and a ball cost $1.10. The bat costs $1.00 more than the ball. How much

does the ball cost?

2. If it takes 5 machines 5 minutes to make 5 widgets, how long would it take 100

machines to make 100 widgets?

3. In a lake, there is a patch of lily pads. Every day, the patch doubles in size. If it

takes 48 days for the patch to cover the entire lake, how long would it take for the

patch to cover half of the lake?

B.2 Guessing Game

Subjects play a total of two guessing games, one against the other subjects in the room

and one against themselves. In these games, subjects are asked to state a number between

0 and 100, both inclusive. Subjects are paid according to the absolute distance of their

guess to two thirds of the average guess. In the first case, this average is calculated as

the average of all guesses of the subjects in the room. In the second case, where subjects

play against themselves, we ask them to state two numbers. The average guess in this

game is calculated as the average of these two numbers. In both cases, iterative deletion

of dominated strategies leads to “0” as the equilibrium choice. The payoff function for

the guessing game against others is given by:

πOS = 1− 0.05

∣∣∣∣x− 2

3
x̄

∣∣∣∣ ,
where x is the stated number, and x̄ is the average number stated by all other subjects.

In the guessing game against oneself, each player plays the game for two “selves”. Hence

she has two payoff functions:
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πS1 = 0.5− 0.05

∣∣∣∣y − 2

3

y + z

2

∣∣∣∣ ,
πS2 = 0.5− 0.05

∣∣∣∣z − 2

3

y + z

2

∣∣∣∣ ,
where y and z denote the first and second number stated by subjects respectively.

We decided to make payoffs based on absolute distance because this rule invokes the

same equilibrium as the standard winner takes all scheme, while allowing to pay every

subject for their choice. Note that this kind of payment scheme is common in the guess-

ing game literature (e.g., Costa-Gomes and Crawford (2006), Güth, Kocher, and Sutter

(2002). Moreover, Kocher and Sutter (2006) argue that continuous payoff schemes “re-

semble financial decision-making much more than the basic winner takes-all scheme with

a boundary equilibrium”).

B.3 Race to 60

In the Race to 60, the participants play a game against the computer in which both

sequentially pick values between 1 and 10, which are added up into a “common pool”.

The goal of the game is to to be the one to push this common pool to or above 60. By

picking numbers such that the common pool adds up to the sequence : [5, 16, 27, 38, 49, 60]

the first mover can always win this game. So, to always win the game the first mover

should start by picking 5, then, after the computer has made its choice, pick whichever

number pushes the common pool to 16, then to 27, then to 38, 49, and finally to 60 (or

above). This game is used to measure the levels of backward induction subjects can make,

by observing when they enter (and stay on) the optimal path.

Subjects played this game 12 times against a computer whose backward induction

ability increased every two rounds. So, subjects started playing two rounds against a

computer able to do only one backward induction step (i.e. the computer is able to pick

the correct number to add up to 60 if the sum is above 49, otherwise the computer plays

a random number). Then subjects played the following two rounds against a computer

able to do two steps of backward induction (i.e. adding the numbers to 49 if the current

sum is between 39 and 48, and to 60 if the sum is above 49), and so on. Subjects were

not aware of this increase in ability of the computer.

35



Lottery A Lottery B

Line p Euro p Euro p Euro p Euro

1 0.1 2.00 0.9 1.60 0.1 3.85 0.9 0.10
2 0.2 2.00 0.8 1.60 0.2 3.85 0.8 0.10
3 0.3 2.00 0.7 1.60 0.3 3.85 0.7 0.10
4 0.4 2.00 0.6 1.60 0.4 3.85 0.6 0.10
5 0.5 2.00 0.5 1.60 0.5 3.85 0.5 0.10
6 0.6 2.00 0.4 1.60 0.6 3.85 0.4 0.10
7 0.7 2.00 0.3 1.60 0.7 3.85 0.3 0.10
8 0.8 2.00 0.2 1.60 0.8 3.85 0.2 0.10
9 0.9 2.00 0.1 1.60 0.9 3.85 0.1 0.10
10 1.0 2.00 0.0 1.60 1.0 3.85 0.0 0.10

Table 8: Price list

We chose this procedure to be able to detect low levels of backward induction, since

if the computer had played its best response all the time, we would have never been

able to identify backward induction levels below 6. For example, imagine a subject with

less than 6 steps of backward induction ability; this subject will not (most likely!) start

out on the optimal path (5) and would be instantly “kicked” off the optimal path by

a perfectly backward inducting computer, not allowing us to observe her true level of

backward induction.

B.4 Risk Preferences

To elicit risk preferences, we use a standard Holt and Laury price list (Holt and Laury,

2002). Subjects repeatedly choose between two lotteries (A and B), one involving rela-

tively low risk, and one involving relatively high risk (i.e. a higher variance in potential

payoffs). Table 2 describes all choices subjects face. In the Table, p represents the proba-

bility to win the “Euro” amount right of it in the table. The point at which subjects first

prefer Option B over Option A can be used to assess their risk preferences.31

C Index of Cognitive Sophistication

The index Si used to rank participants is constructed according to the following weighted

average:

31The software allowed to switch only once from Option A to B. See Appendix A for more details.
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Figure 6: Histogram of CRT

Si = 1/3 ∗ CRTi + 1/3 ∗GGi + 1/3 ∗R60i

C.1 CRT

CRT is the normalized result of the number of correct answers for the CRT questions (if

all three answers are correct, CRT = 1, if only two are correct, CRT = 2/3, if only one,

CRT = 1/3, and CRT = 0 if no correct answers.

C.2 GG

The measure GG combines the outcomes of the Guessing Game and Guessing Game

Against Oneself and is defined as GG = 0.5 ∗DistanceOSni + 0.5 ∗ Selfni, where:

DistanceOSn The variable DistanceOSn is our measure of how well a subject performed

in the guessing game. To construct it we take the following steps. First, we separate

the choices of all subjects (ChoiceOSi) into two groups: those that played a dominated

strategy (i.e. ChoiceOS > 66) and the rest. Those in the former group are assigned a

score of zero for their DistanceOSn. We then define our “objective” value, which is 2/3 of

the average of choices all chosen numbers in the guessing game across all sessions , which
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is 25.587. With this, we create a measure called Distancei as follows:

Distancei = |(25.587− ChoiceOSi)/(66− 25.587)|,

if ChoiceOSi ≤ 66. This allows us to rank all subjects in a range between zero and one,

with zero being assigned to those players that played exactly the objective value and one

to those subjects that played above 66. In addition, we posit that choosing a number

below the objective value indicates a better understanding of the game than choosing a

number above it. Accordingly, in our measure of cognitive sophistication for the guessing

game we add an extra 50% to the “distance” for any choice above the objective value.

This translates into the following equation:

DistanceOSni = max{0,

1−Distancei ∗ 1.5 if ChoiceOSi > 25.587

1−Distancei if ChoiceOSi < 25.587
}

Selfn The measure Selfn, for cognitive sophistication in the “playing against self” game,

is again a two-step procedure. We posit that the game has two dimensions of under-

standing: the first dimension is realizing that the numbers picked should always be close

together (in fact they should be the same); the second dimension is realizing that there
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is a unique correct answer (zero for both choices). In order to evaluate both dimensions

we first measure the distance of each choice (ProximitySelf1 and ProximitySelf2) to 2/3

of the average (AvgSelf) of both:

ProximitySelf1i = |Self1i − 2/3AvgSelf|

ProximitySelf2i = |Self2i − 2/3AvgSelf|

,

where Self1i is the first number chosen and Self2i is the second number chosen by subject

i. We then create a normalized measure for the proximity of both values:

NormalizedSelfai = 1− (ProximitySelf1i + ProximitySelfi2)/100

Next we compute the second measure:

Normalizedselfbi = 1− (Self1i + Self2i )/200,

which penalizes subjects for picking numbers away from the solution of the game.

Using both NormalizedSelfa and NormalizedSelfb we create the final measure:

Selfni = (NormalizedSelfai + NormalizedSelfbi)/2

C.3 R60

R60 is composed by two measures extracted from the Race to 60 game and is defined as

R60 = 0.5 ∗Wonni + 0.5 ∗MeanBIni, where:

Wonn: This measure is the normalization of the number of rounds won by each subject

in the Race to 60 game (Woni):

Wonni = Woni/12
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MeanBIn This measure is the average number of backward induction steps (MeanBIn)

that a subject made during the 12 Rounds of Race to 60. Race to 60 has a correct path

[5, 16, 27, 38, 49, 60] that allows the first mover to always win the game. The number

of backward induction steps is dependent on when a subject enters this optimal path

and stays on it. If a subject starts out with a 5, and then stays on the correct path,

we say that she has 6 backward induction steps. In this case she has solved the game

completely. Consequently, if a subject enters the correct path at, say, 38 she thinks three

steps ahead. We then create the measure MeanBIn which is the normalized mean of

backward induction steps that a subject has taken across all 12 rounds.

MeanBIi =
12∑
r=1

BIstepsir
12

C.4 Distribution of Si

Finally we present the distribution of Si in Figure 11. Any subject with a score Si > 0.678

(Si < 0.28) was considered to be of High (Low) Sophistication.

The symmetric weighting of Si was picked because a priori any choice of weights is

arbitrary. We felt comfortable with this solution as our measures are highly correlated

(see Table 9), pointing towards an Si that is robust to changes in its weights. In order to
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confirm this we sort our subjects into High and Low following the ”No CRT”, ”No Guess-

ing”, and ”No Race” criteria. In each of these cases one of the three main measures was

dropped and equal weights were given to the remaining ones. The percentage of subjects

that overlapped with our original symmetric measure and the robustness modifications

are reported in Table 10. As is clear from the results our index Si is robust to changes in

its weights.
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Figure 11: Histogram of Cognitive Sophistication(Si). The red dashed lines mark the
separation for Low and High Sophistication subjects.

CRT GG R60

CRT 1 - -
GG 0.422 1 -
R60 0.477 0.396 1

Table 9: Correlation between measures.

High Low

No CRT 0.828 0.771
No GG 0.828 0.809
No R60 0.716 0.857

Table 10: Percentage of overlapping subjects in the High and Low groups. No CRT is
constructed by giving half of the weight to GG and the other half to R60, No GG is gives
half the weight to CRT and half to R60, while No R60 gives half the weight to CRT and
half to GG.
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D Asset Market Experiment Instructions

This is the second part of the experiment. 32

Overview This is an economic experiment on decisions in markets. In this experiment

we generate a market, in which you trade units of a fictitious asset with the other partic-

ipants of the experiment. The instructions are not complicated, and if you follow them

closely and make appropriate decisions, you can earn a considerable amount of money.

The money that you earn during the experiment will be paid in cash at the end of the

experiment. The experiment consists of 3 rounds. Each round consists of 15 periods (in

the following also named trading periods) in which you have the opportunity to trade in

the market, i.e. to buy and sell. The currency in which you trade is called “Taler”. All

transactions in the market will be denoted in this currency. The payoff that you receive

will be paid in Euro. You will receive one Euro for every 90 Taler.

Experiment Software and Market You will be trading in one of two markets, each

of which consists of 7 participants. Both markets are identical in their functionality and

are independent of each other. Your assignment to one of these markets is random, and

you will stay in this market for the duration of the experiment. You can make your

decisions in the market through the experiment software. A screenshot of this software

can be found on the next page. In every trading period you can buy and sell units of an

asset (called “share” from now on). In the top left corner of the screen you can see how

many Taler and shares you have at every moment (see screenshot). In case you want to

buy shares, you can issue a buy order. A buy order contains the number of shares that

you want to buy and the highest price that you are willing to pay per share. In case

you want to sell shares, you can issue a sell order. Similar to the buy order, a sell order

contains the number of shares that you want to sell as well as the lowest price that you

are willing to accept for each share. The price at which you want to buy shares has to be

lower than the price at which you want to sell shares. All prices refer to prices of a single

share.

32In the instructions for the “shared-knowledge” High Sophistication treatments the following sentences
were added at this point: “Based on your answers to the questionnaires and your actions in the games
of the first part of the experiment, we have calculated a ”performance score” that reflects the quality of
your decisions. You have been invited to this experiment today because your score was above average.”
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The experiment software combines the buy and sell orders of all participants and

determines the trading price, at which shares are bought and sold. This price is determined

so that the number of shares with sell order prices at or below this price is equal to the

number of shares with buy order prices at or above this price. All participants who submit

buy orders above the trading price will buy shares, and those that have sell orders below

the trading price will sell shares. Example of how the market works: Suppose there are

four traders in the market and:

• Trader 1 submits a buy order for one share at the price of 60 Taler.

• Trader 2 submits a buy order for one share at the price of 20 Taler.

• Trader 3 submits a sell order for one share at the price of 10 Taler.

• Trader 4 submits a sell order for one share at the price of 40 Taler.

At any price above 40, there are more units offered for sale than units for purchase.

At any price below 20, there are more units offered for purchase than for sale. At any

price between 21 and 39, there is an equal number of units offered for purchase and sale.

The trading price is the lowest price at which there is an equal number of units offered

for purchase and sale. In this case, the trading price is 21 Taler. Trader 1 buys one share

from Trader 3 at the price of 21 Taler. Trader 2 buys no shares, because her buy order

price is below the trading price. Trader 4 does not sell any shares, because her sell order

price is above the trading price.

Specific Instructions for this Experiment This experiment consist of 3 independent

rounds, each consisting of 15 trading periods. In every period you can trade in the market,

according to the rules stated above. At the start of each round, you receive an endowment

of Taler and shares. This endowment does not have to be the same for every participant.

As mentioned, you can see the amount of shares and Taler that you own on the top

left corner of your screen. Shares have a life of 15 periods. The shares that you have

purchased in one period are at your disposal at the next period. If you happen to own 5

shares at the end of period 1, you own the same 5 shares at the beginning of period 2. For

every share you own, you receive a dividend at the end of each of the 15 periods. At the

end of each period, including period 15, each share pays a dividend of either 0, 4, 14, or
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Accuracy Your Earnings

Within 10% of actual price 5 Taler
Within 25% of actual price 2 Taler
Within 50% of actual price 1 Taler

30 Taler, with equal probability. This means that the average dividend is 12 Taler. The

dividend is added automatically to your Taler account at the end of each period. After

the dividend of period 15 has been paid, the market closes and you will not receive any

further dividends for the shares that you own. After this round is finished, a new round of

15 period starts, in which you can buy and sell shares. Since all rounds are independent,

shares and Taler from the previous period are not at your disposal anymore. Instead, you

receive the same endowment of shares and Taler that you had at the beginning of round

one. The experiment consists of 3 rounds with 15 periods each.

Average Holding Value The table “Average Holding Value”, which is attached to

these instructions, is meant to facilitate your choices. The table shows how much dividend

a share pays on average, if you hold it from the current period until the last period, i.e.

period 15 of this round. The first column indicates the current period. The second column

gives the average earnings of a share if it is held from this period until the end of the round.

These earnings are calculated as the average dividend, 12, multiplied by the number of

remaining periods, including the current period.

Predictions In addition to the money you earn by trading shares, you can earn ad-

ditional money by predicting the trading prices. In every period, before you can trade

shares, you will be asked to predict the trading prices in all future periods. You will

indicate your forecasts in a screen that looks exactly like the screen in front of you. The

cells correspond to the periods for which you have to make a forecast. Each cell is labeled

with the period for which you are asked to make a forecast. The amount of Taler you can

earn with your forecasts is calculated as follows.

You can earn money on each and every forecast. The accuracy is calculated separately

for each forecast. For example, in period 2, your forecast from period 1 and your forecast

from period 2 are evaluated separately. If both forecast are within 10% of the actual price,

you earn 2*5=10 Taler. If one is within 10% of the actual price and one is within 25% of

the actual price, but not within 10%, you earn 5 Taler + 2 Taler = 7 Taler.
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Your Payoff For your participation you receive a fixed payment of 5 Euro and a pay-

ment that depends on your actions. The latter part of the payment is calculated for

each round, as the amount of Taler that you have at the end of period 15, after the last

dividend has been paid, plus the amount of Taler you receive for your forecasts. Your

payoff for each round is calculated as:

The amount of Taler you have at the beginning of period 1

+ the dividends you receive

+ Taler that you receive from selling shares

– Taler that you spend on shares

+ Taler that you earn with your forecasts.

The total payment that you receive in Euro consists of the sum of Taler you earn in

all three rounds, multiplied by 1/90, plus the fixed payment of 5 Euro.
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Period Average Holding Value

1 180
2 168
3 156
4 144
5 132
6 120
7 108
8 96
9 84
10 72
11 60
12 48
13 36
14 24
15 12
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Figure 12: Average transactions across market types
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Field of Study Frequency Percent Accumulated Percent

Not reported 6 14.29 14.29
Anthropology 1 2.38 16.67
Business Administration 1 2.38 19.05
Business Mathematics 1 2.38 21.43
Economics 1 2.38 23.81
Electrical Engineering 1 2.38 26.19
Energy Technology 3 7.14 33.33
Engineering 2 4.76 38.10
English / American Studies 1 2.38 40.48
Environmental Engineering 1 2.38 42.86
German studies 1 2.38 45.24
Industrial Engineering 5 11.90 57.14
Landscape Planning 1 2.38 59.52
Law 2 4.76 64.29
Mathematics 1 2.38 66.67
Political science 1 2.38 69.05
Psychology 2 4.76 73.81
Romance languages and literature 1 2.38 76.19
Social sciences 1 2.38 78.57
Sports Science 1 2.38 80.95
Theology 1 2.38 83.33
Transportation 2 4.76 88.10
other 5 11.90 100.00

Total 42 100.00

Table 11: Low sophistication subjects (self reported) Field of Study
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Field of Study Frequency Percent Accumulated Percent

Not reported 4 6.35 6.35
Biology 1 1.59 7.94
Business Mathematics 1 1.59 9.52
Chemistry 1 1.59 11.11
Computer science 2 3.17 14.29
Economic computer science 3 4.76 19.05
Economics 4 6.35 25.40
Electrical Engineering 2 3.17 28.57
Energy Technology 2 3.17 31.75
Engineering 10 15.87 47.62
Engineering Sciences 1 1.59 49.21
Geography 1 1.59 50.79
Industrial Engineering 10 15.87 66.67
Law 1 1.59 68.25
Mathematics 12 19.05 87.30
Musicology 1 1.59 88.89
Psychology 1 1.59 90.48
Technical computer science 1 1.59 92.06
Transportation 3 4.76 96.83
other 2 3.17 100.00

Total 63 100.00

Table 12: High Sophistication subjects (self reported) Field of Study

Low High

Roundtrend Periodtrend Roundtrend Periodtrend R2 Low/High

Round 1 .103∗∗∗ .875∗∗∗ .659/.961
(.004) (.003)

Round 2 .536∗∗∗ .061∗∗∗ .905∗∗∗ .075∗∗∗ .885/.992
(.010) (.006) (.004) (.004)

Round 3 .739∗∗∗ −.002 .897∗∗∗ .101∗∗∗ .899/.997
(.010) (.004) (.005) (.005)

Notes: The null hypothesis is that the coefficient is equal to zero (* (p < 0.10), ** (p < 0.05), ***

(p < 0.01)).

Table 4a: Estimated coefficients for Roundtrend and Periodtrend in the adaptive model
without Clustering.
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Fundamental value (γ)
Low

Fundamental value (γ)
High

R2 Low/High

Round 1 −.090??? .778??? .617/.842
(.025) (.008)

Round 2 .628??? .984??? .790/.978
(.021) (.003)

Round 3 .793??? .956??? .844/.988
(.015) (.002)

Notes: The null hypothesis is that the coefficient is equal to one (? (p < 0.10), ?? (p < 0.05), ???

(p < 0.01)).

Table 5a: Estimated coefficients in the fundamental value model without clustering.

Low High

α β α β R2 Low/High

Round 1 1.07 .620??? 8.82∗∗∗ 1.44??? .178/.369
(3.68) (.142) (2.21) (.168)

Round 2 −8.92∗∗∗ .365??? −5.25∗∗∗ .445??? .067/.209
(2.78) (.138) (1.08) (.076)

Round 3 −10.3∗∗∗ .356??? -2.53 .694?? .094/.179
(2.35) (.115) (1.72) (.130)

Notes: The null hypothesis is that the coefficient for α is zero (* (p < 0.10), ** (p < 0.05), ***

(p < 0.01)). For β the null hypothesis is that the coefficient is equal to one (? (p < 0.10), ?? (p < 0.05),

? ? ? (p < 0.01)).

Table 6a: Relationship between actual and predicted price without clustering.
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